Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences

welcome Image

The proceedings series Theoretical and Natural Science (TNS) is an international peer-reviewed open access series which publishes conference proceedings from a wide variety of disciplinary perspectives concerning theoretical studies and natural science issues. The series publishes articles that are research-oriented and welcomes theoretical articles concerning micro and macro-scale phenomena. Proceedings that are suitable for publication in the TNS cover domains on various perspectives of mathematics, physics, chemistry, biology, agricultural science, and medical science. The series aims to provide a high-level platform where academic achievements of great importance can be disseminated and shared.

More from Theoretical and Natural Science

Announcements

December 21, 2022

Theoretical and Natural Science - Gender and Diversity pledge


We pledge to our series community:

  • We're committed: we put diversity and inclusion at the heart of our activities
  • We champion change: we're working to increase the percentage of women, early career ...

December 6, 2021

Theoretical and Natural Science - Disclaimer


  • The statements, opinions and data contained in the series Theoretical and Natural Science (TNS) are solely those of the individual authors and contributors and not of the publisher and the editor(s). Theoretical and Natural Science stays neutral with regard to jurisdictional claims in published maps and ...
  • Find more announcements

    News

  • February 22, 2023, Good News! Welcome Dr. Marwan Omar from Illinois Institute of Technology to give a speech at CONF-CIAP 2023!
  • February 21, 2023, Good News! Welcome Dr. Roman Bauer from University of Surrey to give a speech at CONF-CIAP 2023!
  • February 21, 2023, Good News! Welcome Dr. Achintya Haldar from University of Arizona to give a speech at CONF-CIAP 2023!
  • February 14, 2023, Good News! Welcome Dr. Alvina Haseeb from Auckland University to give a speech at ICMMGH 2023!
  • February 13, 2023, Good News! Welcome Dr. Alan Wang from Auckland University to give a speech at ICBioMed 2023!
  • Find more news

    Latest articles

    Open Access | Article

    This review article provides a comprehensive overview of the fascinating field of noncommutative probability theory, tracing its evolution from its inception in the early 1980s by Romanian-American mathematician Dan Voiculescu to its current state of prominence in mathematics. Through a meticulous examination of seminal works and recent advancements, we explore the key concepts, methodologies, and significant developments in this field, emphasizing the combinatorial aspects of noncommutative probability spaces, including non-crossing partitions and linked partitions. This exploration encompasses various aspects, including analytical methods, operator algebras, random matrices, and combinatorial structures. Additionally, it concludes with the current understanding and potential directions for future research.

    Open Access | Article

    The greedy algorithm is a commonly used algorithm design idea that can provide efficient solutions to many practical problems. This paper aims to review and summarize the basic ideas, characteristics and application fields of greedy algorithms, and discuss their advantages and limitations. Firstly, the basic concepts of greedy algorithms are introduced, including the greedy selection properties and optimal substructures. Then, some classic greedy algorithms such as the backpack problem, the activity selection problem, and the minimum spanning tree problem are introduced, and the concept of time complexity is introduced. Next, the application of greedy algorithms in practical problems, such as scheduling problems, network routing, and graph generation, will be discussed. Finally, the advantages of the greedy algorithm and the limitation of the inability to obtain the global optimal solution will be evaluated, and the improvement direction combined with other algorithms will be proposed.

    Open Access | Article

    A digital electronic clock is a sophisticated timing instrument that employs digital technology to showcase the hours, minutes, and seconds. Distinct from traditional timekeeping devices, these clocks offer unparalleled precision, eliminating the need for mechanical transmission components. Their displays are not only clear and easy to read but also streamlined, which enhances their appeal. In the ever-evolving urban landscape, where aesthetics and functionality are paramount, digital electronic clocks have carved out a significant niche. These modern marvels can now be found gracing numerous settings, from state-of-the-art office spaces to contemporary homes. Their widespread adoption can be attributed to their ability to blend seamlessly with diverse interior designs while offering the primary benefit of precise timekeeping. Additionally, their low maintenance requirements and resilience to wear and tear make them a preferred choice for many. As architectural and interior trends continue to emphasize sleekness and modernity, the prevalence of digital electronic clocks is expected to further soar, underscoring their relevance in today’s fast-paced world.

    Open Access | Article

    In the relentless march of technological advancement, the semiconductor industry remains at the forefront of innovation. Among the myriad breakthroughs, FinFET technology stands out as a recent focal point in research. Serving as an avant-garde semiconductor manufacturing process, FinFET plays a pivotal role in enhancing chip performance, diminishing power consumption, and minimizing component size. At its core, FinFET is a distinct type of field-effect transistor (FET) that utilizes a thin silicon “fin” as the conducting channel. This structure has revolutionized the way transistors are designed, offering remarkable control over the current flow through the channel. This control is achieved by wrapping a gate material around the three visible sides of the fin, which provides superior switching behavior and leakage reduction. Beyond its foundational principles, FinFET’s inherent characteristics offer numerous advantages. For instance, the technology paves the way for more densely packed transistors, enabling more powerful yet compact integrated circuits. Moreover, its innovative design leads to more energy-efficient chips, which are crucial for today’s demanding computing and electronic environments.

    All Volumes / Recent Volumes

    Indexing

    Copyright © 2023 EWA Publishing. Unless Otherwise Stated