Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 27, 20 December 2023


Open Access | Article

Bacteria mediated cancer treatment (BMCT) and quorum sensing system in BMCT

Xiaohan Diao * 1
1 University of Pittsburgh

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 27, 19-33
Published 20 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Xiaohan Diao. Bacteria mediated cancer treatment (BMCT) and quorum sensing system in BMCT. TNS (2023) Vol. 27: 19-33. DOI: 10.54254/2753-8818/27/20240645.

Abstract

Many treatments against cancer already exist. For example, radiation therapy, chemical therapy and immunotherapy, combined the physical surgery, these treatments do make a remarkable effect in inhibiting the growth of the tumor and thus prolonging the patient’s life. However, most of the treatments mentioned above would simultaneously damage normal cells and cause trauma or pain to the patients. In recent years, researchers have turned their attention to the remarkable natural abilities of certain bacteria such as Salmonella and E. coli, in suppressing malignant cells and solid tumors. Bacteria-mediated cancer treatment (BMCT) has emerged as a promising approach that offers the potential for reduced patient trauma and enhanced precision in targeting cancerous tissues. Furthermore, the integration of quorum sensing systems, initially utilized in the fermentation process holds promise in augmenting the navigational capabilities of bacteria. This advance opens the door to the development of highly location-sensitive bio-agents capable of delivering substantial quantities of specific therapeutic proteins directly to tumor sites. This review aims to comprehensively examine existing BMCT methodologies and explore the quorum sensing pathways that have been identified. Additionally, it contemplates the feasibility of synergizing these two systems to offer a novel perspective on cancer treatment.

Keywords

Quorum sensing, Salmonella, Bacteria-mediated cancer treatment, colorectal cancer

References

1. Cai, Z., Sanchez, A., Shi, Z., Zhang, T., Liu, M., & Zhang, D. (2011). Activation of Toll-like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth. Cancer Research, 71(7), 2466–2475.

2. Chen, W., Zhu, Y., Zhang, Z., & Sun, X. (2022). Advances in Salmonella Typhimurium-based drug delivery system for cancer therapy. Advanced Drug Delivery Reviews, 185, 114295.

3. Lee, C.-H., Wu, C.-L., & Shiau, A.-L. (2008). Toll-like Receptor 4 Mediates an Antitumor Host Response Induced by Salmonella choleraesuis. Clinical Cancer Research, 14(6), 1905–1912.

4. Pawelek, J. M., Low, K. B., & Bermudes, D. (2003). Bacteria as tumour-targeting vectors. The Lancet Oncology, 4(9), 548–556.

5. Clairmont, C., Lee, K. C., Pike, J., Ittensohn, M., Low, K. B., Pawelek, J., Bermudes, D., Brecher, S. M., Margitich, D., Turnier, J., Li, Z., Luo, X., King, I., & Zheng, L. M. (2000). Biodistribution and Genetic Stability of the Novel Antitumor Agent VNP20009, a Genetically Modified Strain of Salmonella typhimurium. The Journal of Infectious Diseases, 181(6), 1996–2002.

6. Loeffler, M., Le’Negrate, G., Krajewska, M., & Reed, J. C. (2008). IL-18-producing Salmonella inhibit tumor growth. Cancer Gene Therapy, 15(12), 787–794.

7. Liang, K., Liu, Q., Li, P., Luo, H., Wang, H., & Kong, Q. (2019). Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Letters, 448, 168–181.

8. Mi, Z., Feng, Z.-C., Li, C., Yang, X., Ma, M.-T., & Rong, P.-F. (2019). Salmonella-Mediated Cancer Therapy: An Innovative Therapeutic Strategy. Journal of Cancer, 10(20), 4765–4776.

9. Li, C.-X., Yu, B., Shi, L., Geng, W., Lin, Q.-B., Ling, C.-C., Yang, M., Ng, K. T. P., Huang, J.-D., & Man, K. (2017). ‘Obligate’ anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice. Oncology Letters, 13(1), 177–183.

10. Yang, C.-J., Chang, W.-W., Lin, S.-T., Chen, M.-C., & Lee, C.-H. (2018). Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation. International Journal of Medical Sciences, 15(6), 574–579.

11. Kim K., Min S.-Y., Lim H.-D., You S.-H., Lim D., Jeong J.-H., Kim H.-J., Rhee J. H., Park K., Shin M., Kim G.-J., Min J.-J., & Choy H. E. (2018). Cell mass-dependent expression of an anticancer protein drug by tumor-targeted Salmonella. Oncotarget, 9(9), 8548–8559.

12. Kalia, V. C., Patel, S. K. S., Cho, B.-K., Wood, T. K., & Lee, J.-K. (2022). Emerging applications of bacteria as antitumor agents. Seminars in Cancer Biology, 86, 1014–1025.

13. Chorobik, P., Czaplicki, D., Ossysek, K., & Bereta, J. (2013). Salmonella and cancer: From pathogens to therapeutics. Acta Biochimica Polonica, 60(3).

14. Zhu, Q., & Berzofsky, J. A. (2013). Oral vaccines. Gut Microbes, 4(3), 246–252.

15. Toso, J. F., Gill, V. J., Hwu, P., Marincola, F. M., Restifo, N. P., Schwartzentruber, D. J., Sherry, R. M., Topalian, S. L., Yang, J. C., Stock, F., Freezer, L. J., Morton, K. E., Seipp, C., Haworth, L., Mavroukakis, S., White, D., MacDonald, S., Mao, J., Sznol, M., & Rosenberg, S. A. (2002). Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients With Metastatic Melanoma. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 20(1), 142–152.

16. Quintero, D., Carrafa, J., Vincent, L., & Bermudes, D. (2016). EGFR‐targeted Chimeras of Pseudomonas ToxA released into the extracellular milieu by attenuated Salmonella selectively kill tumor cells. Biotechnology and Bioengineering, 113(12), 2698–2711.

17. Nemunaitis, J., Cunningham, C., Senzer, N., Kuhn, J., Cramm, J., Litz, C., Cavagnolo, R., Cahill, A., Clairmont, C., & Sznol, M. (2003). Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Therapy, 10(10), Article 10.

18. Felgner, S., Frahm, M., Kocijancic, D., Rohde, M., Eckweiler, D., Bielecka, A., Bueno, E., Cava, F., Abraham, W.-R., Curtiss, R., Häussler, S., Erhardt, M., & Weiss, S. (2016). AroA -Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant. MBio, 7(5), e01220-16.

19. Study Record | ClinicalTrials.gov. (n.d.). Retrieved September 23, 2023, from https://clinicaltrials.gov/study/NCT01099631?cond=cancer&term=salmonella&rank=1#publications

20. Liu, L., Zeng, X., Zheng, J., Zou, Y., Qiu, S., & Dai, Y. (2022). AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiological Research, 262, 127102.

21. Zhong, X., Lu, R., Liu, F., Ye, J., Zhao, J., Wang, F., & Yang, M. (2021). Identification of LuxR Family Regulators That Integrate Into Quorum Sensing Circuit in Vibrio parahaemolyticus. Frontiers in Microbiology, 12, 691842.

22. Egland, K. A., & Greenberg, E. P. (1999). Quorum sensing in Vibrio fischeri: Elements of the luxI promoter. Molecular Microbiology, 31(4), 1197–1204.

23. Zhang, B., Ku, X., Zhang, X., Zhang, Y., Chen, G., Chen, F., Zeng, W., Li, J., Zhu, L., & He, Q. (2019). The AI-2/luxS Quorum Sensing System Affects the Growth Characteristics, Biofilm Formation, and Virulence of Haemophilus parasuis. Frontiers in Cellular and Infection Microbiology, 9.

24. Escobar-Muciño, E., Arenas-Hernández, M. M. P., & Luna-Guevara, M. L. (2022). Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms, 10(5), Article 5.

25. Barber, C. E., Tang, J. L., Feng, J. X., Pan, M. Q., Wilson, T. J. G., Slater, H., Dow, J. M., Williams, P., & Daniels, M. J. (1997). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Molecular Microbiology, 24(3), 555–566.

26. Wei, Y., Perez, L. J., Ng, W.-L., Semmelhack, M. F., & Bassler, B. L. (2011). Mechanism of Vibrio cholerae autoinducer-1 biosynthesis. ACS Chemical Biology, 6(4), 356–365.

27. Zohar, B.-A., & Kolodkin-Gal, I. (2015). Quorum Sensing in Escherichia coli: Interkingdom, Inter- and Intraspecies Dialogues, and a Suicide-Inducing Peptide. In V. C. Kalia (Ed.), Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight (pp. 85–99). Springer India.

28. Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319–346.

29. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M., & Hardie, K. R. (2005). Making “sense” of metabolism: Autoinducer-2, LUXS and pathogenic bacteria. Nature Reviews Microbiology, 3(5), Article 5. https://doi.org/10.1038/nrmicro1146

30. Aganja, R. P., Chandran, & Lee, J. H. (n.d.). AI-2 quorum sensing controlled delivery of cytolysin-A by tryptophan auxotrophic low-endotoxic Salmonella and its anticancer effects in CT26 mice with colon cancer. Retrieved September 23, 2023, from

31. Deryabin, D., Galadzhieva, A., Kosyan, D., & Duskaev, G. (2019). Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. International Journal of Molecular Sciences, 20(22), Article 22.

32. Kumar, L., Patel, S. K. S., Kharga, K., Kumar, R., Kumar, P., Pandohee, J., Kulshresha, S., Harjai, K., & Chhibber, S. (2022). Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules, 27(21), 7584.

33. Sperandio, V., Torres, A. G., Girón, J. A., & Kaper, J. B. (2001). Quorum Sensing Is a Global Regulatory Mechanism in Enterohemorrhagic Escherichia coli O157:H7. Journal of Bacteriology, 183(17), 5187–5197.

34. Moreira, C. G., & Sperandio, V. (2016). The Epinephrine/Norepinephrine /Autoinducer-3 Interkingdom Signaling System in Escherichia coli O157:H7. In M. Lyte (Ed.), Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health (Vol. 874, pp. 247–261). Springer International Publishing.

35. Swofford, C. A., Van Dessel, N., & Forbes, N. S. (2015). Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proceedings of the National Academy of Sciences, 112(11), 3457–3462.

36. Sawicki, T., Ruszkowska, M., Danielewicz, A., Niedźwiedzka, E., Arłukowicz, T., & Przybyłowicz, K. E. (2021). A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers, 13(9), Article 9.

37. Kong, W., Wanda, S.-Y., Zhang, X., Bollen, W., Tinge, S. A., Roland, K. L., & Curtiss, R. (2008). Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proceedings of the National Academy of Sciences, 105(27), 9361–9366.

38. Shahnazari, M., Samadi, P., Pourjafar, M., & Jalali, A. (2020). Therapeutic vaccines for colorectal cancer: The progress and future prospect. International Immunopharmacology, 88, 106944.

39. Yu, B., Yang, M., Shi, L., Yao, Y., Jiang, Q., Li, X., Tang, L.-H., Zheng, B.-J., Yuen, K.-Y., Smith, D. K., Song, E., & Huang, J.-D. (2012). Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain. Scientific Reports, 2(1), 436.

40. Aganja, R. P., Sivasankar, C., Hewawaduge, C., & Lee, J. H. (2022). Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Veterinary Research, 53(1), 76.

41. Rabe, B. A., & Cepko, C. (2020). A Simple Enhancement for Gibson Isothermal Assembly [Preprint]. Molecular Biology.

42. Zhao, Y., Yao, Y., Li, L., An, W., Chen, H., Sun, L., Kang, H., Wang, S., & Hu, X. (2014). Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF–MDM2–p53 pathway. Medical Oncology, 31(12), 288.

43. Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., & Peters, G. (1998). The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal, 17(17), 5001–5014.

44. Crépin, S., Harel, J., & Dozois, C. M. (2012). Chromosomal Complementation Using Tn 7 Transposon Vectors in Enterobacteriaceae. Applied and Environmental Microbiology, 78(17), 6001–6008.

45. Su, L.-K., Kinzler, K. W., Vogelstein, B., Preisinger, A. C., Moser, A. R., Luongo, C., Gould, K. A., & Dove, W. F. (1992). Multiple Intestinal Neoplasia Caused by a Mutation in the Murine Homolog of the APC Gene. Science, 256(5057), 668–670.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2nd International Conference on Modern Medicine and Global Health
ISBN (Print)
978-1-83558-237-4
ISBN (Online)
978-1-83558-238-1
Published Date
20 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/27/20240645
Copyright
20 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated