Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 27, 20 December 2023


Open Access | Article

Potential application of Saccharina japonica and its extracts in cosmetology

Weng Xi * 1
1 Xiamen University

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 27, 96-100
Published 20 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Weng Xi. Potential application of Saccharina japonica and its extracts in cosmetology. TNS (2023) Vol. 27: 96-100. DOI: 10.54254/2753-8818/27/20240710.

Abstract

Saccharina japonica (S. japonica), a type of brown algae widely consumed in east Asia due to its enormous health benefits, has now been greeted with great expectation in the field of cosmetics. Although many cosmetological functions of S. japonica extracts have been reported, there is still a lack of comprehensive review on the potential application of S. japonica and its extract in cosmetology. This article aims to sum up the cosmetological functions of S. japonica extracts, including anti-inflammation, skin whitening, anti-oxidation, and anti-bacterial activities. Moreover, the production of bioactive chemicals from S. japonica is explored, hoping to provide new insights into cosmetic manufacturing. Study exploration was conducted using online databases (PubMed) using the keywords Saccharina japonica, Laminaria japonica, kelp, cosmetics, anti-inflammation, skin whitening, anti-oxidation, anti-bacterial, etc., focusing on established pre-clinical trials proving relative bioactivities.

Keywords

S. japonica, cosmetic, anti-inflammation, skin whitening, anti-oxidation

References

1. Balboa, E. M., Conde, E., Moure, A., Falqué, E., & Domínguez, H. (2013). In. vitro antioxidant properties of crude extracts and compounds from brown algae. Food chemistry, 138(2-3), 1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026

2. Ozawa, T., Yamamoto, J., Yamagishi, T., Yamazaki, N., & Nishizawa, M. (2006). Two fucoidans in the holdfast of cultivated Laminaria japonica. Journal of Natural Medicines, 60(3), 236-239. https://doi.org/10.1007/s11418-006-0046-2

3. Xu, X., Kim, J. Y., Oh, Y. R., & Park, J. M. (2014). Production of biodiesel from. carbon sources of macroalgae, Laminaria japonica. Bioresource technology, 169, 455–461. https://doi.org/10.1016/j.biortech.2014.07.015

4. Park, E.-J., & Choi, J.-i. (2017). Melanogenesis inhibitory effect of low molecular weight fucoidan from Undaria pinnatifida. Journal of Applied Phycology, 29(5), 2213-2217. https://doi.org/10.1007/s10811-016-1048-4

5. Ni, L., Wang, L., Fu, X., Duan, D., Jeon, Y. J., Xu, J., & Gao, X. (2020). In vitro and in vivo anti-inflammatory activities of a fucose-rich fucoidan isolated from Saccharina japonica. Int J Biol Macromol, 156, 717-729. https://doi.org/10.1016/j.ijbiomac.2020.04.012

6. Park, K. H., & Cho, K. H. (2011). A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. Fish & shellfish immunology, 31(6), 904–910. https://doi.org/10. 1016/j.fsi.2011.08.006

7. Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem, 32(1), 403-425. https://doi.org/10.1080/14756366.2016.1256882

8. Silchenko, A. S., Rasin, A. B., Kusaykin, M. I., Malyarenko, O. S., Shevchenko, N. M., Zueva, A. O., Kalinovsky, A. I., Zvyagintseva, T. N., & Ermakova, S. P. (2018). Modification of native fucoidan from Fucus evanescens by recombinant fucoidanase from marine bacteria Formosa algae. Carbohydrate Polymers, 193, 189-195. https://doi.org/https://doi. org/10.1016/j.carbpol.2018.03.094

9. Silchenko, A. S., Rasin, A. B., Kusaykin, M. I., Malyarenko, O. S., Shevchenko, N. M., Zueva, A. O., Kalinovsky, A. I., Zvyagintseva, T. N., & Ermakova, S. P. (2018). Modification of native fucoidan from Fucus evanescens by recombinant fucoidanase from marine bacteria Formosa algae. Carbohydrate Polymers, 193, 189-195. https://doi.org/https://doi. org/10.1016/j.carbpol.2018.03.094

10. Rinnerthaler, M., Bischof, J., Streubel, M. K., Trost, A., & Richter, K. (2015). Oxidative Stress in Aging Human Skin. Biomolecules, 5(2), 545-589. https://www.mdpi.com/2218-273X/5/2/545

11. Sundarammal, S., Thirugnanasampandan, R., & Selvi, M. T. (2012). Chemical composition analysis and antioxidant activity evaluation of essential oil from Orthosiphon thymiflorus (Roth) Sleesen. Asian Pacific Journal of Tropical Biomedicine, 2(1, Supplement), S112-S115. https://doi.org/https://doi.org/10.1016/S2221-1691(12)60139-7

12. Yang, Y. I., Woo, J. H., Seo, Y. J., Lee, K. T., Lim, Y., & Choi, J. H. (2016). Protective Effect of Brown Alga Phlorotannins against Hyper-inflammatory Responses in Lipopolysaccharide-Induced Sepsis Models. Journal of agricultural and food chemistry, 64(3), 570–578. https://doi.org/10.1021/acs.jafc.5b04482

13. Bai, Y., Sun, Y., Gu, Y., Zheng, J., Yu, C., & Qi, H. (2020). Preparation, Characterization and Antioxidant Activities of Kelp Phlorotannin Nanoparticles. Molecules, 25(19). https://doi.org/10.3390/molecules25194550

14. Patra, J. K., Das, G., & Baek, K. H. (2015). Chemical Composition and Antioxidant and Antibacterial Activities of an Essential Oil Extracted from an Edible Seaweed, Laminaria japonica L. Molecules, 20(7), 12093-12113. https://doi.org/10.3390/molecules200712093

15. Kim, Y. H., Kim, J. H., Jin, H. J., & Lee, S. Y. (2013). Antimicrobial activity of ethanol extracts. of Laminaria japonica against oral microorganisms. Anaerobe, 21, 34–38. https://doi.org/10.1016/j.anaerobe.2013.03.012

16. Brown, A. T., Largent, B. A., Ferretti, G. A., & Lillich, T. T. (1986). Chemical control of plaque-dependent oral diseases: the use of chlorhexidine. Compendium (Newtown, Pa.), 7(10), 719–724.

17. Kim, Y. H., Kim, S. M., & Lee, S. Y. (2015). Antimicrobial Activity of Protamine against Oral. Microorganisms. Biocontrol science, 20(4), 275–280. https://doi.org/10.4265/bio.20.275

18. Hameury, S., Borderie, L., Monneuse, J. M., Skorski, G., & Pradines, D. (2019). Prediction of skin anti-aging clinical benefits of an association of ingredients from marine and maritime origins: Ex vivo evaluation using a label-free quantitative proteomic and customized data processing approach. J Cosmet Dermatol, 18(1), 355-370. https://doi.org/10.1111/jocd.12528

19. Yu, P., & Chao, X. (2013). Statistics-based optimization of the extraction process of kelp polysaccharide and its activities. Carbohydr Polym, 91(1), 356-362. https://doi.org/10.1016/j.carbpol.2012.08.043

20. Cottier-Cook, E. J., Cabarubias, J. P., Brakel, J., Brodie, J., Buschmann, A. H., Campbell, I., Critchley, A. T., Hewitt, C. L., Huang, J., Hurtado, A. Q., Kambey, C. S. B., Lim, P. E., Liu, T., Mateo, J. P., Msuya, F. E., Qi, Z., Shaxson, L., Stentiford, G. D., & Bondad-Reantaso, M. G. (2022). A new Progressive Management Pathway for improving seaweed biosecurity. Nature Communications, 13(1), 7401. https://doi.org/10.1038/s41467-022-34783-8

21. Duarte, C. M., Bruhn, A., & Krause-Jensen, D. (2022). A seaweed aquaculture imperative to meet global sustainability targets. Nature Sustainability, 5(3), 185-193. https://doi.org/10.1038/ s41893-021-00773-9

22. Ho, K. K. H. Y., & Redan, B. W. (2022). Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Critical reviews in food science and nutrition, 62(2), 508–526. https://doi.org/10.1080/10408398.2020.1821598

23. Liu, P., Hu, J., Wang, Q., Tan, J., Wei, J., Yang, H., Tang, S., Huang, H., Zou, Y., & Huang, Z. (2023). Physicochemical characterization and cosmetic application of kelp blanching water polysaccharides. Int J Biol Macromol, 248, 125981. https://doi.org/10.1016/j.ijbiomac. 2023.125981

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2nd International Conference on Modern Medicine and Global Health
ISBN (Print)
978-1-83558-237-4
ISBN (Online)
978-1-83558-238-1
Published Date
20 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/27/20240710
Copyright
20 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated