Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 24, 20 December 2023


Open Access | Article

Research on the bidirectional relationships between sleep and parkinson’s disease

Joshua Lee * 1
1 Shatin College

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 24, 33-39
Published 20 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Joshua Lee. Research on the bidirectional relationships between sleep and parkinson’s disease. TNS (2023) Vol. 24: 33-39. DOI: 10.54254/2753-8818/24/20231091.

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease in the world, and among its most common symptoms is sleep disruption. Due to the glymphatic system’s role in removing alpha-synuclein and other substances related to PD pathogenesis, glymphatic dysfunction has been established as a risk factor for PD. Though sleep disturbance is often a symptom of PD, its role in increasing glymphatic clearance has led some researchers to believe that sleep disturbance could also be a risk factor for PD. This review will examine the scientific literature that suggests links between sleep disruption, PD pathology, or glymphatic dysfunction, as well as address some of the limitations in affirming such relationships. According to current research, sleep disruption is a common nonmotor symptom of PD but can also lead to reduced glymphatic function, which in turn reduces alpha-synuclein clearance and advances PD pathogenesis. However, PD development could also impair glymphatic clearance by depolarizing AQP4 channels or reducing sleep duration and quality.

Keywords

sleep, glymphatic system, Parkinson’s disease, alpha-synuclein

References

1. Dorsey, E., Sherer, T., Okun, M., & Bloem, B. (2018). The Emerging Evidence of the Parkinson Pandemic. Journal Of Parkinson's Disease, 8(s1), S3-S8. doi: 10.3233/jpd- 181474.

2. DeMaagd, G., & Philip, A. (2015). Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharmacy and Therapeutics, 40 (8).

3. Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson’s disease - PubMed. Journal of Neurochemistry, 139 Suppl 1. https://doi.org/10.1111/jnc.13691.

4. Pajares M., Rojo A.I., Manda G., Boscá L., Cuadrado A. Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells. 2020; 9:1687. doi: 10.3390/cells9071687.

5. Subramaniam S.R., Chesselet M.-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol. 2013;106– 107:17–32. doi: 10. 1016/j.pneurobio.2013.04.004.

6. Sundaram S., Hughes R.L., Peterson E., Müller-Oehring E.M., Brontë-Stewart H.M., Poston K.L., Faerman A., Bhowmick C., Schulte T. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neurosci. Biobehav. Rev. 2019; 103:305–315. doi: 10. 1016/j.neubiorev.2019.05.016.

7. Reddy, O. C., & Werf, Y. D. van der. (2020). The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sciences, 10(11).https://doi.org/10.3390/brainsci10110868.

8. Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D. J., Nicholson, C., Iliff, J. J., Takano, T., Deane, R., & Nedergaard, M. (2013). Sleep Drives Metabolite Clearance from the Adult Brain. Science (New York, N.Y.), 342(6156).https://doi.org/10.1126/science.1241224.

9. Tuura, R. O., Volk, C., Callaghan, F., Jaramillo, V., & Huber, R. (2021). Sleep-related and diurnal effects on brain diffusivity and cerebrospinal fluid flow - PubMed. NeuroImage, 241. https://doi.org/10.1016/j.neuroimage.2021.118420.

10. Scott-Massey, A., Boag, M. K., Magnier, A., Bispo, D. P. C. F., Khoo, T. K., & Pountney, D. L. (2022). Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease. International Journal of Molecular Sciences, 23(21).https://doi.org/10.3390/ijms232112928.

11. Sundaram, S., Hughes, R. L., Peterson, E., Müller-Oehring, E. M., Brontë-Stewart, H. M., Posto-n, K. L., Faerman, A., Bhowmick, C., & Schulte, T. (2019). Establishing a framework for ne-uropathological correlates and glymphatic system functioning in Parkinson’s disease. Neuro-science and Biobehavioral Reviews, 103.https://doi.org/10.1016/j.neubiorev.2019.05.016.

12. Fernandes, Pierantozzi, Stefani, Cattaneo, Bonizzoni, Cerroni, Mercuri, & Liguori. (2021). Frequency of Non-motor Symptoms in Parkinson’s Patients With Motor Fluctuations. Frontiers in Neurology, 12.https://doi.org/10.3389/fneur.2021.678373.

13. Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B., & Barker, R. A. (2014). Sleep and Circadian Rhythm Regulation in Early Parkinson Disease. JAMA Neurology, 71(5).https://doi.org/10.1001/jamaneurol.2014.65.

14. Ding, H., Liu, S., Yuan, Y., Lin, Q., Chan, P., & Cai, Y. (2011). Decreased expression of Bmal2 i-n patients with Parkinson’s disease - PubMed. Neuroscience Letters, 499(3).https://doi.org/1-0.1016/j.neulet.2011.05.058.

15. Wallace, D. M., Wohlgemuth, W. K., Trotti, L. M., Amara, A. W., Malaty, I. A., Factor, S. A., Nallu, S., Wittine, L., & Hauser, R. A. (2020). Practical Evaluation and Management of Insomnia in Parkinson’s Disease: A Review. Movement Disorders Clinical Practice, 7(3), 250–266. https://doi.org/10.1002/mdc3.12899.

16. Agid, Y., Cervera, P., Hirsch, E., Javoy-Agid, F., Lehericy, S., Raisman, R., & Ruberg, M. (1989). Biochemistry of Parkinson’s disease 28 years later: A critical review. Movement Disorders, 4(S1), S126–S144. https://doi.org/10.1002/mds.870040514.

17. Iranzo, A., Fernández-Arcos, A., Tolosa, E., Serradell, M., Molinuevo, J., & Valldeoriola, F. et al. (2014). Neurodegenerative Disorder Risk in Idiopathic REM Sleep Behavior Disorder: Study in 174 Patients. Plos ONE, 9(2), e89741. doi: 10.1371/journal.pone.0089741.

18. Sixel-Doring, F., Trautmann, E., Mollenhauer, B., & Trenkwalder, C. (2011). Associated factors for REM sleep behavior disorder in Parkinson disease. Neurology, 77(11), 1048-1054. doi: 10.1212/wnl.0b013e31822e560e.

19. Nomura, T., Inoue, Y., Högl, B., Uemura, Y., Kitayama, M., Abe, T., Miyoshi, H., & Nakashima, K. (2010). Relationship between 123I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease. Parkinsonism & Related Disorders, 16(10), 683–685. https://doi.org/10.1016/j.parkreldis.2010.08.011.

20. Hsiao Y.H., Chen Y.T., Tseng C.M., Wu L.A., Perng D.W., Chen Y.M., Chen T.J., Chang S.C., Chou K.T. Sleep disorders and an increased risk of Parkinson’s disease in individuals with non-apnea sleep disorders: A population-based cohort study. J. Sleep Res. 2017; 26:623 – 628. doi: 10.1111/jsr. 12545.

21. Ono, K., Mochizuki, H., Ikeda, T., Nihira, T., Takasaki, J., Teplow, D. B., & Yamada, M. (2012). Effect of melatonin on α-synuclein self-assembly and cytotoxicity - PubMed. Neurobiology of Aging, 33(9). https://doi.org/10.1016/j.neurobiolaging.2011.10.015.

22. Malhotra, S., Sawhney, G., & Pandhi, P. (2004). The Therapeutic Potential of Melatonin: A Revi-ew of the Science. Medscape General Medicine, 6(2). https://www.ncbi.nlm.nih.gov/pmc/art-icles/PMC1395802/.

23. Fan, Y., Kong, H., Shi, X., Sun, X., Ding, J., Wu, J., & Hu, G. (2008). Hypersensitivity of aquap-orin 4-deficient mice to 1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyrindine and astrocytic mod-ulation - PubMed. Neurobiology of Aging, 29(8). https://doi.org/10.1016/j.neurobiolaging.2-007.02.015.

24. Cheng, Y., Fan, Y., He, L., Liu, W., Wen, X., Zhou, S., Wang, X., Zhang, C., Kong, H., Sonoda, L., Tripathi, P., Li, C. J., Yu, M. S., Su, C., & Hu, G. (2011). Novel role of aquaporin-4 in CD4+ CD25+ T regulatory cell development and severity of Parkinson’s disease. 10(3), 368–382. https://doi.org/10.1111/j.1474-9726.2011.00677.x.

25. Kress, B. T., Iliff, J. J., Xia, M., Wang, M., Wei, H. S., Zeppenfeld, D., Xie, L., Kang, H., Xu, Q., Liew, J. A., Plog, B. A., Ding, F., Deane, R., & Nedergaard, M. (2014). Impairment of paravascular clearance pathways in the aging brain. Annals of Neurology, 76(6), 845–861. https://doi.org/10.1002/ana.24271.

26. Li, Y., Zhu, Z., Chen, J., Zhang, M., Yang, Y., & Huang, P. (2020). Dilated Perivascular Space in the Midbrain May Reflect Dopamine Neuronal Degeneration in Parkinson’s Disease. 12. https://doi.org/10.3389/fnagi.2020.00161.

27. Chen, H., Wan, H., Zhang, M., Wardlaw, J. M., Feng, T., & Wang, Y. (2022). Perivascular space in Parkinson’s disease: Association with CSF amyloid/tau and cognitive decline. 95, 70–76. https://doi.org/10.1016/j.parkreldis.2022.01.002.

28. Küppers E, Gleiser C, Brito V, Wachter B, Pauly T, Hirt B, Grissmer S, 2008. AQP4 expression in striatal primary cultures is regulated by dopamine - Implications for proliferation of astrocytes. Eur. J. Neurosci 28, 2173–2182. 10. 1111/j. 1460- 9568.2008.06531.x.

29. Sundaram, S., Hughes, R. L., Peterson, E., Müller-Oehring, E. M., Brontë-Stewart, H. M., Posto-n, K. L., Faerman, A., Bhowmick, C., & Schulte, T. (2019). Establishing a framework for ne-uropathological correlates and glymphatic system functioning in Parkinson’s disease. Neuro-science and Biobehavioral Reviews, 103.https://doi.org/10.1016/j.neubiorev.2019.05.016.

30. Chen, C., Mossman, E., Malko, P., McDonald, D., Blain, A. P., Bone, L., Erskine, D., Filby, A., Vincent, A. E., Hudson, G., & Reeve, A. K. (2021). Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson’s Disease. Movement Disorders, 37(2), 302–314. https://doi.org/10.1002/mds.28849.

31. Zou, W., Pu, T., Feng, W., Lu, M., Zheng, Y., Du, R., Xiao, M., & Hu, G. (2019). Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Translational Neurodegeneration, 8. https://doi.org/10.1186/s40035-019-0147-y.

32. Ju, Y., Ooms, S., Sutphen, C., Macauley, S., Zangrilli, M., & Jerome, G. et al. (2017). Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain, 140(8), 2104-2111. doi: 10.1093/brain/awx148.

33. Lee, D. A., Lee, H.-J., & Park, K. M. (2021). Glymphatic dysfunction in isolated REM sleep behavior disorder. Acta Neurologica Scandinavica, 145(4), 464–470. https://doi.org/10.1111/ane.13573.

34. Herculano-Houzel, S. (2013). Sleep It Out. Science.

35. Hablitz, L. M., Vinitsky, H. S., Sun, Q., Stæger, F. F., Sigurdsson, B., Mortensen, K. N., Lilius, T. O., & Nedergaard, M. (2019). Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Science Advances, 5(2).https://doi.org/10.1126/sciadv.aav5447.

36. Svetnik V, Snyder ES, Ma J, Tao P, Lines C, Herring WJ (2017) EEG spectral analysis of NREM sleep in a large sample of patients with insomnia and good sleepers: Effects of age, sex and part of the night. J Sleep Res 26, 92–104.

37. Fultz, N. E., Bonmassar, G., Setsompop, K., Stickgold, R. A., Rosen, B. R., Polimeni, J. R., & Lewis, L. D. (2019). Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science (New York, N.Y.), 366(6465). https://doi.org/10.1126/science.aax5440.

38. Pastukhov, Y. F., Simonova, V. V., Shemyakova, T. S., Guzeev, M. A., Polonik, S. G., & Ekimova, I. V. (2019). [U- 133, a heat shock proteins inducer, precludes sleep disturbances in a model of the preclinical stage of Parkinson’s disease in aged rats] - PubMed. Advances in Gerontology = Uspekhi Gerontologii, 32(6).

39. Lee, H., Xie, L., Yu, M., Kang, H., Feng, T., Deane, R., Logan, J., Nedergaard, M., & Benveniste, H. (2015). The Effect of Body Posture on Brain Glymphatic Transport. The Journal of Neuroscience, 35(31). https://doi.org/10.1523/JNEUROSCI.1625- 15.2015.

40. Sundaram, S., Hughes, R. L., Peterson, E., Müller-Oehring, E. M., Brontë-Stewart, H. M., Posto-n, K. L., Faerman, A., Bhowmick, C., & Schulte, T. (2019). Establishing a framework for ne-uropathological correlates and glymphatic system functioning in Parkinson’s disease. Neuro-science and Biobehavioral Reviews, 103, 305–315. https://doi.org/10.1016/j.neubiorev.2019.05.016.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
ISBN (Print)
978-1-83558-221-3
ISBN (Online)
978-1-83558-222-0
Published Date
20 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/24/20231091
Copyright
20 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated