Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 21, 20 December 2023


Open Access | Article

Recent progress in the pathology, diagnosis, and treatment of Alzheimer’s disease

Xiangning Yu * 1
1 Austin Preparatory School

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 21, 86-97
Published 20 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Xiangning Yu. Recent progress in the pathology, diagnosis, and treatment of Alzheimer’s disease. TNS (2023) Vol. 21: 86-97. DOI: 10.54254/2753-8818/21/20230827.

Abstract

Alzheimer’s Disease (AD) is one of the prime cuases of dementia, responsible for 60% to 70% of cases worldwide, according to the World Health Organization (WHO). Unfortunately, numerous research challenges still remain for this disease, which poses a great threat to human health worldwide, especially in the elderly population. Scientists are still struggling to find the pathogenesis and pathogenic mechanisms of AD, and while research for new tests and novel drugs is ongoing, it faces a high failure rate. This article will summarize some remarkable results to date and discuss future research directions.

Keywords

PET scanning, Alzheimer’s Disease, Amyloid-beta (Aβ), Synaptic Dysfunction

References

1. Changing the trajectory of Alzheimer’s disease report 2015. (n.d.). Retrieved February 27, 2023, from https://alz.org/media/Documents/changing-the-trajectory-r.pdf

2. Alzheimer’s association | alzheimer’s disease & dementia help. (n.d.). Retrieved February 27, 2023, from https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf

3. Morris J. C. (2005). Early-stage and preclinical Alzheimer disease. Alzheimer disease and associated disorders, 19(3), 163–165. https://doi.org/10.1097/01.wad.0000184005.22611.cc

4. Hook, V., Toneff, T., Bogyo, M., Greenbaum, D., Medzihradszky, K. F., Neveu, J., Lane, W., Hook, G., & Reisine, T. (2005). Inhibition of cathepsin B reduces beta-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer’s disease. Biological chemistry, 386(9), 931–940. https://doi.org/10.1515/BC.2005.108

5. Hook, V. Y., Kindy, M., Reinheckel, T., Peters, C., & Hook, G. (2009). Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochemical and biophysical research communications, 386(2), 284–288. https://doi.org/10.1016/j.bbrc.2009.05.131

6. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., … Citron, M. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science (New York, N.Y.), 286(5440), 735–741. https://doi.org/10.1126/science.286.5440.735

7. Gouras, G. K., Xu, H., Jovanovic, J. N., Buxbaum, J. D., Wang, R., Greengard, P., Relkin, N. R., & Gandy, S. (1998). Generation and regulation of beta-amyloid peptide variants by neurons. Journal of neurochemistry, 71(5), 1920–1925. https://doi.org/10.1046/j.1471-4159.1998.71051920.x

8. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., & Teplow, D. B. (1992). Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature, 359(6393), 322–325. https://doi.org/10.1038/359322a0

9. Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X. D., McKay, D. M., Tintner, R., & Frangione, B. (1992). Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science (New York, N.Y.), 258(5079), 126–129. https://doi.org/10.1126/science.1439760

10. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T. D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanen, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Selkoe, D., … Younkin, S. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature medicine, 2(8), 864–870. https://doi.org/10.1038/nm0896-864

11. Fukuyama, R., Mizuno, T., Mori, S., Nakajima, K., Fushiki, S., & Yanagisawa, K. (2000). Age-dependent change in the levels of Abeta40 and Abeta42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Abeta42 to Abeta40 level in cerebrospinal fluid from Alzheimer’s disease patients. European neurology, 43(3), 155–160. https://doi.org/10.1159/000008156

12. Barage, S. H., & Sonawane, K. D. (2015). Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 52, 1–18. https://doi.org/10.1016/j.npep.2015.06.008

13. Grimm, M. O., & Hartmann, T. (2012, January 22). Recent understanding of the molecular mechanisms of alzheimer’s disease. Retrieved April 2, 2023, from https://www.omicsonline.org/recent-understanding-of-the-molecular-mechanisms-of-alzheimers-disease-2155-6105.S5-004.php?aid=4137

14. Kauppinen, T. M., Suh, S. W., Higashi, Y., Berman, A. E., Escartin, C., Won, S. J., Wang, C., Cho, S. H., Gan, L., & Swanson, R. A. (2011). Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid β. Journal of neuroinflammation, 8, 152. https://doi.org/10.1186/1742-2094-8-152

15. White, J. A., Manelli, A. M., Holmberg, K. H., Van Eldik, L. J., & Ladu, M. J. (2005). Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiology of disease, 18(3), 459–465. https://doi.org/10.1016/j.nbd.2004.12.013

16. Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer’s disease. Nature immunology, 16(3), 229–236. https://doi.org/10.1038/ni.3102

17. Chan D. C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annual review of genetics, 46, 265–287. https://doi.org/10.1146/annurev-genet-110410-132529

18. Wang, X., Su, B., Lee, H. G., Li, X., Perry, G., Smith, M. A., & Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. The Journal of neuroscience: the official journal of the Society for Neuroscience, 29(28), 9090–9103. https://doi.org/10.1523/JNEUROSCI.1357-09.2009

19. Bossy, B., Petrilli, A., Klinglmayr, E., Chen, J., Lütz-Meindl, U., Knott, A. B., Masliah, E., Schwarzenbacher, R., & Bossy-Wetzel, E. (2010). S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. Journal of Alzheimer’s disease : JAD, 20 Suppl 2(Suppl 2), S513–S526. https://doi.org/10.3233/JAD-2010-100552

20. Manczak, M., Calkins, M. J., & Reddy, P. H. (2011). Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Human molecular genetics, 20(13), 2495–2509. https://doi.org/10.1093/hmg/ddr139

21. Wang, X., Su, B., Fujioka, H., & Zhu, X. (2008). Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. The American journal of pathology, 173(2), 470–482. https://doi.org/10.2353/ajpath.2008.071208 .

22. Castellani, R., Hirai, K., Aliev, G., Drew, K. L., Nunomura, A., Takeda, A., Cash, A. D., Obrenovich, M. E., Perry, G., & Smith, M. A. (2002). Role of mitochondrial dysfunction in Alzheimer’s disease. Journal of neuroscience research, 70(3), 357–360. https://doi.org/10.1002/jnr.10389

23. Gibson, G. E., Sheu, K. F., & Blass, J. P. (1998). Abnormalities of mitochondrial enzymes in Alzheimer disease. Journal of neural transmission (Vienna, Austria: 1996), 105(8-9), 855–870. https://doi.org/10.1007/s007020050099

24. Wang, X., Su, B., Zheng, L., Perry, G., Smith, M. A., & Zhu, X. (2009). The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. Journal of neurochemistry, 109 Suppl 1(Suppl 1), 153–159. https://doi.org/10.1111/j.1471-4159.2009.05867.x

25. Gibson, G. E., Chen, H. L., Xu, H., Qiu, L., Xu, Z., Denton, T. T., & Shi, Q. (2012). Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer’s disease-like calcium dysregulation. Neurobiology of aging, 33(6), 1121.e13–1121.e1.121E24. https://doi.org/10.1016/j.neurobiolaging.2011.11.003

26. Mecca, A. P., O’Dell, R. S., Sharp, E. S., Banks, E. R., Bartlett, H. H., Zhao, W., Lipior, S., Diepenbrock, N. G., Chen, M. K., Naganawa, M., Toyonaga, T., Nabulsi, N. B., Vander Wyk, B. C., Arnsten, A. F. T., Huang, Y., Carson, R. E., & van Dyck, C. H. (2022). Synaptic density and cognitive performance in Alzheimer’s disease: A PET imaging study with [11 C]UCB-J. Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 18(12), 2527–2536. https://doi.org/10.1002/alz.12582

27. Tönnies, E., & Trushina, E. (2017). Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. Journal of Alzheimer’s disease : JAD, 57(4), 1105–1121. https://doi.org/10.3233/JAD-161088

28. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., & Malinow, R. (2003). APP processing and synaptic function. Neuron, 37(6), 925–937. https://doi.org/10.1016/s0896-6273(03)00124-7

29. Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(11), 2866–2875. https://doi.org/10.1523/JNEUROSCI.4970-06.2007

30. Wang, X., Takata, T., Bai, X., Ou, F., Yokono, K., & Sakurai, T. (2012). Pyruvate prevents the inhibition of the long-term potentiation induced by amyloid-β through protein phosphatase 2A inactivation. Journal of Alzheimer’s disease : JAD, 30(3), 665–673. https://doi.org/10.3233/JAD-2012-101869

31. Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M. W., Okamoto, S., Dziewczapolski, G., Nakamura, T., Cao, G., Pratt, A. E., Kang, Y. J., Tu, S., Molokanova, E., McKercher, S. R., Hires, S. A., Sason, H., Stouffer, D. G., Buczynski, M. W., Solomon, J. P., Michael, S., … Lipton, S. A. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proceedings of the National Academy of Sciences of the United States of America, 110(27), E2518–E2527. https://doi.org/10.1073/pnas.1306832110

32. Cho, D. H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., & Lipton, S. A. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science (New York, N.Y.), 324(5923), 102–105. https://doi.org/10.1126/science.1171091

33. Nakamura, T., Wang, L., Wong, C. C., Scott, F. L., Eckelman, B. P., Han, X., Tzitzilonis, C., Meng, F., Gu, Z., Holland, E. A., Clemente, A. T., Okamoto, S., Salvesen, G. S., Riek, R., Yates, J. R., 3rd, & Lipton, S. A. (2010). Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Molecular cell, 39(2), 184–195. https://doi.org/10.1016/j.molcel.2010.07.002

34. Nakamura, T., Tu, S., Akhtar, M. W., Sunico, C. R., Okamoto, S., & Lipton, S. A. (2013). Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron, 78(4), 596–614. https://doi.org/10.1016/j.neuron.2013.05.005

35. Qu, J., Nakamura, T., Cao, G., Holland, E. A., McKercher, S. R., & Lipton, S. A. (2011). S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14330–14335. https://doi.org/10.1073/pnas.1105172108

36. Okamoto, S., Nakamura, T., Cieplak, P., Chan, S. F., Kalashnikova, E., Liao, L., Saleem, S., Han, X., Clemente, A., Nutter, A., Sances, S., Brechtel, C., Haus, D., Haun, F., Sanz-Blasco, S., Huang, X., Li, H., Zaremba, J. D., Cui, J., Gu, Z., … Lipton, S. A. (2014). S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell reports, 8(1), 217–228. https://doi.org/10.1016/j.celrep.2014.06.005

37. Molokanova, E., Akhtar, M. W., Sanz-Blasco, S., Tu, S., Piña-Crespo, J. C., McKercher, S. R., & Lipton, S. A. (2014). Differential effects of synaptic and extrasynaptic NMDA receptors on Aβ-induced nitric oxide production in cerebrocortical neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience, 34(14), 5023–5028. https://doi.org/10.1523/JNEUROSCI.2907-13.2014

38. Jameson, L., Frey, T., Zeeberg, B., Dalldorf, F., & Caplow, M. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry, 19(11), 2472–2479. https://doi.org/10.1021/bi00552a027

39. Wischik, C. M., Crowther, R. A., Stewart, M., & Roth, M. (1985). Subunit structure of paired helical filaments in Alzheimer’s disease. The Journal of cell biology, 100(6), 1905–1912. https://doi.org/10.1083/jcb.100.6.1905

40. Crowther R. A. (1991). Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2288–2292. https://doi.org/10.1073/pnas.88.6.2288

41. Ballatore, C., Lee, V. M., & Trojanowski, J. Q. (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature reviews. Neuroscience, 8(9), 663–672. https://doi.org/10.1038/nrn2194

42. Mazanetz, M. P., & Fischer, P. M. (2007). Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature reviews. Drug discovery, 6(6), 464–479. https://doi.org/10.1038/nrd2111

43. Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M. W., Okamoto, S., Dziewczapolski, G., Nakamura, T., Cao, G., Pratt, A. E., Kang, Y. J., Tu, S., Molokanova, E., McKercher, S. R., Hires, S. A., Sason, H., Stouffer, D. G., Buczynski, M. W., Solomon, J. P., Michael, S., … Lipton, S. A. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proceedings of the National Academy of Sciences of the United States of America, 110(27), E2518–E2527. https://doi.org/10.1073/pnas.1306832110

44. Manczak, M., & Reddy, P. H. (2012). Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Human molecular genetics, 21(11), 2538–2547. https://doi.org/10.1093/hmg/dds072

45. Jadhav, S., Cubinkova, V., Zimova, I., Brezovakova, V., Madari, A., Cigankova, V., & Zilka, N. (2015). Tau-mediated synaptic damage in Alzheimer’s disease. Translational neuroscience, 6(1), 214–226. https://doi.org/10.1515/tnsci-2015-0023

46. Dujardin, S., Lécolle, K., Caillierez, R., Bégard, S., Zommer, N., Lachaud, C., Carrier, S., Dufour, N., Aurégan, G., Winderickx, J., Hantraye, P., Déglon, N., Colin, M., & Buée, L. (2014). Neuron-to-neuron wild-type Tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta neuropathologica communications, 2, 14. https://doi.org/10.1186/2051-5960-2-14

47. Chandra, A., Valkimadi, P. E., Pagano, G., Cousins, O., Dervenoulas, G., Politis, M., & Alzheimer’s Disease Neuroimaging Initiative (2019). Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer’s disease and mild cognitive impairment. Human brain mapping, 40(18), 5424–5442. https://doi.org/10.1002/hbm.24782

48. Omidvari, N., Cheng, L., Leung, E. K., Abdelhafez, Y. G., Badawi, R. D., Ma, T., Qi, J., & Cherry, S. R. (2022). Lutetium background radiation in total-body PET-A simulation study on opportunities and challenges in PET attenuation correction. Frontiers in nuclear medicine (Lausanne, Switzerland), 2, 963067. https://doi.org/10.3389/fnume.2022.963067

49. Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergström, M., Savitcheva, I., Huang, G. F., Estrada, S., Ausén, B., Debnath, M. L., Barletta, J., Price, J. C., Sandell, J., Lopresti, B. J., Wall, A., Koivisto, P., Antoni, G., Mathis, C. A., … Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Annals of neurology, 55(3), 306–319. https://doi.org/10.1002/ana.20009

50. Rowe, C. C., Ellis, K. A., Rimajova, M., Bourgeat, P., Pike, K. E., Jones, G., Fripp, J., Tochon-Danguy, H., Morandeau, L., O’Keefe, G., Price, R., Raniga, P., Robins, P., Acosta, O., Lenzo, N., Szoeke, C., Salvado, O., Head, R., Martins, R., Masters, C. L., … Villemagne, V. L. (2010). Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiology of aging, 31(8), 1275–1283. https://doi.org/10.1016/j.neurobiolaging.2010.04.007

51. Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., Szoeke, C., Macaulay, S. L., Martins, R., Maruff, P., Ames, D., Rowe, C. C., Masters, C. L., & Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group (2013). Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet. Neurology, 12(4), 357–367. https://doi.org/10.1016/S1474-4422(13)70044-9

52. Hatashita, S., Yamasaki, H., Suzuki, Y., Tanaka, K., Wakebe, D., & Hayakawa, H. (2014). [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. European journal of nuclear medicine and molecular imaging, 41(2), 290–300. https://doi.org/10.1007/s00259-013-2564-y

53. Nordberg, A., Carter, S. F., Rinne, J., Drzezga, A., Brooks, D. J., Vandenberghe, R., Perani, D., Forsberg, A., Långström, B., Scheinin, N., Karrasch, M., Någren, K., Grimmer, T., Miederer, I., Edison, P., Okello, A., Van Laere, K., Nelissen, N., Vandenbulcke, M., Garibotto, V., … Herholz, K. (2013). A European multicentre PET study of fibrillar amyloid in Alzheimer’s disease. European journal of nuclear medicine and molecular imaging, 40(1), 104–114. https://doi.org/10.1007/s00259-012-2237-2

54. Barthel, H., Gertz, H. J., Dresel, S., Peters, O., Bartenstein, P., Buerger, K., Hiemeyer, F., Wittemer-Rump, S. M., Seibyl, J., Reininger, C., Sabri, O., & Florbetaben Study Group (2011). Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. The Lancet. Neurology, 10(5), 424–435. https://doi.org/10.1016/S1474-4422(11)70077-1

55. Tiepolt, S., Barthel, H., Butzke, D., Hesse, S., Patt, M., Gertz, H. J., Reininger, C., & Sabri, O. (2013). Influence of scan duration on the accuracy of β-amyloid PET with florbetaben in patients with Alzheimer’s disease and healthy volunteers. European journal of nuclear medicine and molecular imaging, 40(2), 238–244. https://doi.org/10.1007/s00259-012-2268-8

56. Klunk, W. E., Koeppe, R. A., Price, J. C., Benzinger, T. L., Devous, M. D., Sr, Jagust, W. J., Johnson, K. A., Mathis, C. A., Minhas, D., Pontecorvo, M. J., Rowe, C. C., Skovronsky, D. M., & Mintun, M. A. (2015). The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer’s & dementia : the journal of the Alzheimer’s Association, 11(1), 1–15.e154. https://doi.org/10.1016/j.jalz.2014.07.003

57. Villeneuve, S., Rabinovici, G. D., Cohn-Sheehy, B. I., Madison, C., Ayakta, N., Ghosh, P. M., La Joie, R., Arthur-Bentil, S. K., Vogel, J. W., Marks, S. M., Lehmann, M., Rosen, H. J., Reed, B., Olichney, J., Boxer, A. L., Miller, B. L., Borys, E., Jin, L. W., Huang, E. J., Grinberg, L. T., … Jagust, W. (2015). Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain : a journal of neurology, 138(Pt 7), 2020–2033. https://doi.org/10.1093/brain/awv112

58. Betthauser, T. J., Lao, P. J., Murali, D., Barnhart, T. E., Furumoto, S., Okamura, N., Stone, C. K., Johnson, S. C., & Christian, B. T. (2017). In Vivo Comparison of Tau Radioligands 18F-THK-5351 and 18F-THK-5317. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 58(6), 996–1002. https://doi.org/10.2967/jnumed.116.182980

59. Kroth, H., Oden, F., Molette, J., Schieferstein, H., Capotosti, F., Mueller, A., Berndt, M., Schmitt-Willich, H., Darmency, V., Gabellieri, E., Boudou, C., Juergens, T., Varisco, Y., Vokali, E., Hickman, D. T., Tamagnan, G., Pfeifer, A., Dinkelborg, L., Muhs, A., & Stephens, A. (2019). Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. European journal of nuclear medicine and molecular imaging, 46(10), 2178–2189. https://doi.org/10.1007/s00259-019-04397-2

60. Stephens, A., Seibyl, J., Muelle, A., Barret, O., Berndt, M., Madonia, J., . . . Dinkelborg, L. (n.d.). IC-P-220: Clinical Update: 18F-PI-2620, A Next Generation Tau PET Agent Evaluated In Subjects With Alzheimer’s Disease. Retrieved April 2, 2023, from https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2018.06.696

61. Rupprecht, R., Papadopoulos, V., Rammes, G., Baghai, T. C., Fan, J., Akula, N., Groyer, G., Adams, D., & Schumacher, M. (2010). Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nature reviews. Drug discovery, 9(12), 971–988. https://doi.org/10.1038/nrd3295

62. Kuhlmann, A. C., & Guilarte, T. R. (2000). Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. Journal of neurochemistry, 74(4), 1694–1704. https://doi.org/10.1046/j.1471-4159.2000.0741694.x

63. Fan, Z., Brooks, D. J., Okello, A., & Edison, P. (2017). An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain: a journal of neurology, 140(3), 792–803. https://doi.org/10.1093/brain/aww349

64. Fan, Z., Okello, A. A., Brooks, D. J., & Edison, P. (2015). Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer’s disease. Brain: a journal of neurology, 138(Pt 12), 3685–3698. https://doi.org/10.1093/brain/awv288

65. Ching, A. S., Kuhnast, B., Damont, A., Roeda, D., Tavitian, B., & Dollé, F. (2012). Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights into imaging, 3(1), 111–119. https://doi.org/10.1007/s13244-011-0128-x

66. Edison, P., & Brooks, D. J. (2018). Role of Neuroinflammation in the Trajectory of Alzheimer’s Disease and in vivo Quantification Using PET. Journal of Alzheimer’s disease: JAD, 64(s1), S339–S351. https://doi.org/10.3233/JAD-179929

67. Hovet, S., Ren, H., Xu, S., Wood, B., Tokuda, J., & Tse, Z. T. H. (2018). MRI-powered biomedical devices. Minimally invasive therapy & allied technologies: MITAT: official journal of the Society for Minimally Invasive Therapy, 27(4), 191–202. https://doi.org/10.1080/13645706.2017.1402188

68. Jack C. R., Jr (2011). Alliance for aging research AD biomarkers work group: structural MRI. Neurobiology of aging, 32 Suppl 1(0 1), S48–S57. https://doi.org/10.1016/j.neurobiolaging.2011.09.011

69. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Jr, Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., … Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association, 7(3), 280–292. https://doi.org/10.1016/j.jalz.2011.03.003

70. Blennow, K., & Zetterberg, H. (2018). Biomarkers for Alzheimer’s disease: current status and prospects for the future. Journal of internal medicine, 284(6), 643–663. https://doi.org/10.1111/joim.12816

71. Chen, Y., Fu, A. K. Y., & Ip, N. Y. (2019). Synaptic dysfunction in Alzheimer’s disease: Mechanisms and therapeutic strategies. Pharmacology & therapeutics, 195, 186–198. https://doi.org/10.1016/j.pharmthera.2018.11.006

72. Fish, P. V., Steadman, D., Bayle, E. D., & Whiting, P. (2019). New approaches for the treatment of Alzheimer’s disease. Bioorganic & medicinal chemistry letters, 29(2), 125–133. https://doi.org/10.1016/j.bmcl.2018.11.034

73. Khan, S., Barve, K. H., & Kumar, M. S. (2020). Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current neuropharmacology, 18(11), 1106–1125. https://doi.org/10.2174/1570159X18666200528142429

74. Kanatsu, K., & Tomita, T. (2017). Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease. Frontiers in bioscience (Landmark edition), 22(1), 180–192. https://doi.org/10.2741/4480

75. Van Cauwenberghe, C., Van Broeckhoven, C., & Sleegers, K. (2016). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genetics in medicine : official journal of the American College of Medical Genetics, 18(5), 421–430. https://doi.org/10.1038/gim.2015.117

76. Katsouri, L., Lim, Y. M., Blondrath, K., Eleftheriadou, I., Lombardero, L., Birch, A. M., Mirzaei, N., Irvine, E. E., Mazarakis, N. D., & Sastre, M. (2016). PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proceedings of the National Academy of Sciences of the United States of America, 113(43), 12292–12297. https://doi.org/10.1073/pnas.1606171113

77. Rafii, M. S., Tuszynski, M. H., Thomas, R. G., Barba, D., Brewer, J. B., Rissman, R. A., Siffert, J., Aisen, P. S., & AAV2-NGF Study Team (2018). Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients With Alzheimer Disease: A Randomized Clinical Trial. JAMA neurology, 75(7), 834–841. https://doi.org/10.1001/jamaneurol.2018.0233

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
ISBN (Print)
978-1-83558-215-2
ISBN (Online)
978-1-83558-216-9
Published Date
20 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/21/20230827
Copyright
20 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated