Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 33, 08 March 2024


Open Access | Article

Inflammatory response and cell cycle pathways contribute to innate resistance to Anti-PD-1 therapy in glioblastoma

Xingyuan Zhou * 1
1 The Experimental High School Attached to Beijing Normal University

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 33, 105-113
Published 08 March 2024. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Xingyuan Zhou. Inflammatory response and cell cycle pathways contribute to innate resistance to Anti-PD-1 therapy in glioblastoma. TNS (2024) Vol. 33: 105-113. DOI: 10.54254/2753-8818/33/20240867.

Abstract

Glioblastoma (GBM), as the most prevalent malignant primary brain tumor in adults, is characterized by limited treatment options and poor prognosis. Immune checkpoint inhibitors have revolutionized cancer therapy, prompting interest in their potential application in GBM treatment. This study identified potential targets for enhancing the efficacy of GBM immunotherapy by a statistical analysis of genomic and transcriptional data coupled with an exploration of the molecular mechanisms governing patient responses to immunotherapy. Our analysis revealed that the effectiveness of anti-PD-1 immunotherapy in GBM is closely associated with the mutational burden of the tumor and the age at which treatment is initiated. In addition, we found that the gene set signature of cell cycle regulation is upregulated, while the immune response regulation pathways are enriched in the tumors from non-responsive patients. These findings underscore the potential effectiveness of targeting these pathways in the context of anti-PD-1 immunotherapy, with the promise of enhancing patient outcomes in GBM.

Keywords

Glioblastoma, Immunotherapy, PD-1 Inhibitor, Precision Medicine

References

1. Gilbert, M. R., Dignam, J. J., Armstrong, T. S., Wefel, J. S., Blumenthal, D. T., Vogelbaum, M. A., Colman, H., Chakravarti, A., Pugh, S., Won, M., Jeraj, R., Brown, P. D., Jaeckle, K. A., Schiff, D., Stieber, V. W., Brachman, D. G., Werner-Wasik, M., Tremont-Lukats, I. W., Sulman, E. P., Aldape, K. D., … Mehta, M. P. (2014). A randomized trial of bevacizumab for newly diagnosed glioblastoma. The New England journal of medicine, 370(8), 699–708. https://doi.org/10.1056/NEJMoa1308573

2. Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., Segal, N. H., Ariyan, C. E., Gordon, R. A., Reed, K., Burke, M. M., Caldwell, A., Kronenberg, S. A., Agunwamba, B. U., Zhang, X., Lowy, I., Inzunza, H. D., Feely, W., Horak, C. E., Hong, Q., … Sznol, M. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England journal of medicine, 369(2), 122–133. https://doi.org/10.1056/NEJMoa1302369

3. Garon, E. B., Rizvi, N. A., Hui, R., Leighl, N., Balmanoukian, A. S., Eder, J. P., Patnaik, A., Aggarwal, C., Gubens, M., Horn, L., Carcereny, E., Ahn, M. J., Felip, E., Lee, J. S., Hellmann, M. D., Hamid, O., Goldman, J. W., Soria, J. C., Dolled-Filhart, M., Rutledge, R. Z., … KEYNOTE-001 Investigators (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. The New England journal of medicine, 372(21), 2018–2028. https://doi.org/10.1056/NEJMoa1501824

4. Ansell, S. M., Lesokhin, A. M., Borrello, I., Halwani, A., Scott, E. C., Gutierrez, M., Schuster, S. J., Millenson, M. M., Cattry, D., Freeman, G. J., Rodig, S. J., Chapuy, B., Ligon, A. H., Zhu, L., Grosso, J. F., Kim, S. Y., Timmerman, J. M., Shipp, M. A., & Armand, P. (2015). PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. The New England journal of medicine, 372(4), 311–319. https://doi.org/10.1056/NEJMoa1411087

5. Filley, A. C., Henriquez, M., & Dey, M. (2017). Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget, 8(53), 91779–91794. https://doi.org/10.18632/oncotarget.21586

6. Zhao, J., Chen, A. X., Gartrell, R. D., Silverman, A. M., Aparicio, L., Chu, T., Bordbar, D., Shan, D., Samanamud, J., Mahajan, A., Filip, I., Orenbuch, R., Goetz, M., Yamaguchi, J. T., Cloney, M., Horbinski, C., Lukas, R. V., Raizer, J., Rae, A. I., Yuan, J., … Rabadan, R. (2019). Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nature medicine, 25(3), 462–469. https://doi.org/10.1038/s41591-019-0349-y

7. DeCordova, S., Shastri, A., Tsolaki, A. G., Yasmin, H., Klein, L., Singh, S. K., & Kishore, U. (2020). Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Frontiers in immunology, 11, 1402. https://doi.org/10.3389/fimmu.2020.01402

8. Pearson, J. R., Cuzzubbo, S., McArthur, S., Durrant, L. G., Adhikaree, J., Tinsley, C. J., ... & McArdle, S. E. (2020). Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Frontiers in Immunology, 11, 582106. https://doi.org/10.3389/fimmu.2020.582106

9. Osarogiagbon, R. U., Sineshaw, H. M., Unger, J. M., Acuña-Villaorduña, A., & Goel, S. (2021). Immune-based cancer treatment: addressing disparities in access and outcomes. American Society of Clinical Oncology Educational Book, 41, 66-78. https://doi.org/10.1200/EDBK_323523

10. Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., Skora, A. D., Luber, B. S., Azad, N. S., Laheru, D., Biedrzycki, B., Donehower, R. C., Zaheer, A., Fisher, G. A., Crocenzi, T. S., Lee, J. J., Duffy, S. M., Goldberg, R. M., de la Chapelle, A., Koshiji, M., … Diaz, L. A., Jr (2015). PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England journal of medicine, 372(26), 2509–2520. https://doi.org/10.1056/ NEJMoa1500596

11. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W., Yuan, J., Wong, P., Ho, T. S., Miller, M. L., Rekhtman, N., Moreira, A. L., Ibrahim, F., Bruggeman, C., Gasmi, B., Zappasodi, R., Maeda, Y., Sander, C., Garon, E. B., … Chan, T. A. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, N.Y.), 348(6230), 124–128. https://doi.org/10.1126/science.aaa1348

12. Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., West, A. N., Carmona, M., Kivork, C., Seja, E., Cherry, G., Gutierrez, A. J., Grogan, T. R., Mateus, C., Tomasic, G., Glaspy, J. A., … Ribas, A. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571. https://doi.org/10.1038/nature13954

13. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., Bignell, G. R., Bolli, N., Borg, A., Børresen-Dale, A. L., Boyault, S., Burkhardt, B., Butler, A. P., Caldas, C., Davies, H. R., Desmedt, C., Eils, R., Eyfjörd, J. E., Foekens, J. A., Greaves, M., … Stratton, M. R. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–421. https://doi.org/10.1038/nature12477

14. Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A., & Fecci, P. E. (2018). T-cell dysfunction in glioblastoma: applying a new framework. Clinical Cancer Research, 24(16), 3792-3802. https://doi.org/10.1158/1078-0432.CCR-18-0047

15. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., ... & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545-15550. https://doi.org/10.1073/pnas.0506580102

16. Au, L., Hatipoglu, E., de Massy, M. R., Litchfield, K., Beattie, G., Rowan, A., ... & Dransfield, J. (2021). Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma. Cancer Cell, 39(11), 1497-1518. https://doi.org/10.1016/j.ccell.2021.10.001

17. Bu, X., Juneja, V. R., Reynolds, C. G., Mahoney, K. M., Bu, M. T., McGuire, K. A., Maleri, S., Hua, P., Zhu, B., Klein, S. R., Greenfield, E. A., Armand, P., Ritz, J., Sharpe, A. H., & Freeman, G. J. (2021). Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer immunology research, 9(12), 1465–1475. https://doi.org/10.1158/2326-6066.CIR-21-0493

18. O’Connor, M. J., Thakar, T., Nicolae, C. M., & Moldovan, G. L. (2021). PARP14 regulates cyclin D1 expression to promote cell-cycle progression. Oncogene, 40(30), 4872–4883. https://doi.org/10.1038/s41388-021-01881-8

19. Goel, S., Bergholz, J. S., & Zhao, J. J. (2022). Targeting CDK4 and CDK6 in cancer. Nature reviews. Cancer, 22(6), 356–372. https://doi.org/10.1038/s41568-022-00456-3

20. Kent, L. N., & Leone, G. (2019). The broken cycle: E2F dysfunction in cancer. Nature Reviews Cancer, 19(6), 326-338. https://doi.org/10.1038/s41568-019-0143-7

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2nd International Conference on Modern Medicine and Global Health
ISBN (Print)
978-1-83558-323-4
ISBN (Online)
978-1-83558-324-1
Published Date
08 March 2024
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/33/20240867
Copyright
08 March 2024
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated