Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 22, 20 December 2023


Open Access | Article

Influenza virus evolution and vaccine development

Simeng Liu * 1
1 University of Warwick

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 22, 124-130
Published 20 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Simeng Liu. Influenza virus evolution and vaccine development. TNS (2023) Vol. 22: 124-130. DOI: 10.54254/2753-8818/22/20230961.

Abstract

Although the effectiveness of universal influenza vaccines may vary from year to year, getting vaccinated against the influenza virus remains the optimal strategy for preventing influenza virus infection. As a result, recent research has focused on improving the protective efficacy and potency of influenza vaccines. This paper explores two theories: antigenic drift and antigenic imprinting. Antigenic drift refers to the gradual changes and evolution of antigens within influenza viruses. However, epidemiological data suggest that a single strain dominates each flu season. The theory of antigenic imprinting helps explain this phenomenon. Population immunity targets epitopes of limited variables (ELVs). Influenza vaccines can target ELVs to enhance vaccine effectiveness specifically.

Keywords

influenza virus, antigenic drift, antigenic thrift, vaccination, vaccine efficacy

References

1. Harding, A. T. and Heaton, N. S. (2018) 'Efforts to improve the seasonal influenza vaccine', Vaccines, 6(2), pp. 19.

2. Petrova, V. N. and Russell, C. A. (2018) 'The evolution of seasonal influenza viruses', Nature Reviews Microbiology, 16(1), pp. 47-60.

3. Wikramaratna, P. S., Pybus, O. G. and Gupta, S. (2014) 'Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains', Proceedings of the National Academy of Sciences, 111(29), pp. 10767-10772.

4. Bolton, J. S., Klim, H., Wellens, J., Edmans, M., Obolski, U. and Thompson, C. P. (2021) 'An antigenic thrift-based approach to influenza vaccine design', Vaccines, 9(6), pp. 657.

5. Paules, C. and Subbarao, K. (2017) 'Influenza', Lancet, 390(10095), pp. 697-708.

6. Nayak, D. (2014) 'Influenza virus infections', Reference Module in Biomedical Sciences.

7. Medina, R. A. and García-Sastre, A. (2011) 'Influenza A viruses: new research developments', Nature Reviews Microbiology, 9(8), pp. 590-603.

8. Kosik, I. and Yewdell, J. W. (2019) 'Influenza hemagglutinin and neuraminidase: Yin–Yang proteins coevolving to thwart immunity', Viruses, 11(4), pp. 346.

9. Hu, J., Zhang, L. and Liu, X. (2020) 'Role of post-translational modifications in influenza a virus life cycle and host innate immune response', Frontiers in Microbiology, 11, pp. 517461.

10. Harris, A. K., Meyerson, J. R., Matsuoka, Y., Kuybeda, O., Moran, A., Bliss, D., Das, S. R., Yewdell, J. W., Sapiro, G. and Subbarao, K. (2013) 'Structure and accessibility of HA trimers on intact 2009 H1N1 pandemic influenza virus to stem region-specific neutralizing antibodies', Proceedings of the National Academy of Sciences, 110(12), pp. 4592-4597.

11. Kirkpatrick, E., Qiu, X., Wilson, P. C., Bahl, J. and Krammer, F. (2018) 'The influenza virus hemagglutinin head evolves faster than the stalk domain', Scientific reports, 8(1), pp. 1-14.

12. McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E. and McKimm-Breschkin, J. L. (2019) 'Influenza virus neuraminidase structure and functions', Frontiers in microbiology, 10, pp. 39.

13. Zhang, W., Shi, Y., Lu, X., Shu, Y., Qi, J. and Gao, G. F. (2013) 'An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level', Science, 340(6139), pp. 1463-1467.

14. Zhuang, Q., Wang, S., Liu, S., Hou, G., Li, J., Jiang, W., Wang, K., Peng, C., Liu, D. and Guo, A. (2019) 'Diversity and distribution of type A influenza viruses: an updated panorama analysis based on protein sequences', Virology Journal, 16(1), pp. 1-38.

15. Zinder, D., Bedford, T., Gupta, S. and Pascual, M. (2013) 'The roles of competition and mutation in shaping antigenic and genetic diversity in influenza', PLoS pathogens, 9(1), pp. e1003104.

16. Raymond, D. D., Bajic, G., Ferdman, J., Suphaphiphat, P., Settembre, E. C., Moody, M. A., Schmidt, A. G. and Harrison, S. C. (2018) 'Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody', Proceedings of the National Academy of Sciences, 115(1), pp. 168-173.

17. Organization, W. H. (2020) 'Seasonal influenza vaccines: an overview for decision-makers'.

18. Schotsaert, M. and García-Sastre, A. (2017) 'Inactivated influenza virus vaccines: the future of TIV and QIV', Current opinion in virology, 23, pp. 102-106.

19. Control, C. f. D. and Prevention (2018) 'Seasonal influenza vaccine effectiveness, 2005–2018', Clifton Road Atlanta: Centers for Disease Control and Prevention.

20. Thompson, C. P., Lourenço, J., Walters, A. A., Obolski, U., Edmans, M., Palmer, D. S., Kooblall, K., Carnell, G. W., O’Connor, D. and Bowden, T. A. (2018) 'A naturally protective epitope of limited variability as an influenza vaccine target', Nature communications, 9(1), pp. 3859.

21. Plotkin, S. L. and Plotkin, S. A. (2012) 'A short history of vaccination', Vaccines, 4.

22. Jin, H. and Subbarao, K. (2014) 'Live attenuated influenza vaccine', Influenza Pathogenesis and Control-Volume II, pp. 181-204.

23. Milián, E. and Kamen, A. A. (2015) 'Current and emerging cell culture manufacturing technologies for influenza vaccines', BioMed research international, 2015.

24. Jeeva, S., Kim, K.-H., Shin, C. H., Wang, B.-Z. and Kang, S.-M. (2021) 'An update on mRNA-based viral vaccines', Vaccines, 9(9), pp. 965.

25. Neuzil, K. M. (2023) 'An mRNA Influenza Vaccine—Could It Deliver?', New England Journal of Medicine, 388(12), pp. 1139-1141.

26. Pebody, R., Djennad, A., Ellis, J., Andrews, N., Marques, D. F., Cottrell, S., Reynolds, A. J., Gunson, R., Galiano, M. and Hoschler, K. (2019) 'End of season influenza vaccine effectiveness in adults and children in the United Kingdom in 2017/18', Eurosurveillance, 24(31), pp. 1800488.

27. Naeem, A., Elbakkouri, K., Alfaiz, A., Hamed, M. E., Alsaran, H., AlOtaiby, S., Enani, M. and Alosaimi, B. (2020) 'Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015', Journal of Medical Virology, 92(12), pp. 3016-3027.

28. Guthmiller, J. J., Han, J., Li, L., Freyn, A. W., Liu, S. T., Stovicek, O., Stamper, C. T., Dugan, H. L., Tepora, M. E. and Utset, H. A. (2021) 'First exposure to the pandemic H1N1 virus induced broadly neutralizing antibodies targeting hemagglutinin head epitopes', Science Translational Medicine, 13(596), pp. eabg4535.

29. Boudreau, C. M. and Alter, G. (2019) 'Extra-neutralizing FcR-mediated antibody functions for a universal influenza vaccine', Frontiers in immunology, 10, pp. 440.

30. Xuan, C., Shi, Y., Qi, J., Zhang, W., Xiao, H. and Gao, G. F. (2011) 'Structural vaccinology: structure-based design of influenza A virus hemagglutinin subtype-specific subunit vaccines', Protein & cell, 2, pp. 997-1005.

31. Mennini, F. S., Bini, C., Marcellusi, A., Rinaldi, A. and Franco, E. (2018) 'Cost-effectiveness of switching from trivalent to quadrivalent inactivated influenza vaccines for the at-risk population in Italy', Human Vaccines & Immunotherapeutics, 14(8), pp. 1867-1873.

32. Van Bellinghen, L.-A., Meier, G. and Van Vlaenderen, I. (2014) 'The potential cost-effectiveness of quadrivalent versus trivalent influenza vaccine in elderly people and clinical risk groups in the UK: a lifetime multi-cohort model', PLoS One, 9(6), pp. e98437.

33. Jiang, M., Li, P., Wang, W., Zhao, M., Atif, N., Zhu, S. and Fang, Y. (2020) 'Cost-effectiveness of quadrivalent versus trivalent influenza vaccine for elderly population in China', Vaccine, 38(5), pp. 1057-1064.

34. Coughlan, L., Sridhar, S., Payne, R., Edmans, M., Milicic, A., Venkatraman, N., Lugonja, B., Clifton, L., Qi, C. and Folegatti, P. (2018) 'Heterologous two-dose vaccination with simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults', EBioMedicine, 29, pp. 146-154.

35. Matsuzaki, Y., Sugawara, K., Nakauchi, M., Takahashi, Y., Onodera, T., Tsunetsugu-Yokota, Y., Matsumura, T., Ato, M., Kobayashi, K. and Shimotai, Y. (2014) 'Epitope mapping of the hemagglutinin molecule of A/(H1N1) pdm09 influenza virus by using monoclonal antibody escape mutants', Journal of virology, 88(21), pp. 12364-12373.

36. Recker, M., Pybus, O. G., Nee, S. and Gupta, S. (2007) 'The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types', Proceedings of the National Academy of Sciences, 104(18), pp. 7711-7716.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
ISBN (Print)
978-1-83558-217-6
ISBN (Online)
978-1-83558-218-3
Published Date
20 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/22/20230961
Copyright
20 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated