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Abstract. Alzheimer’s Disease (AD) is a neurodegenerative disease associated with
progressive memory and cognitive impairment. Due to the devastating social and financial
impacts of AD, extensive research is put into gaining a clearer understanding of its
pathogenesis and risk factors, as well as the development of treatments that can slow or reverse
the disease progression. Despite this, early and accurate detection of AD and the development
of curative treatments are yet to be achieved. Further, major challenges remain in the
symptomatic treatments available today, as the delivery of Alzheimer’s medications is limited
by low efficiency due to difficulties in blood-brain barrier permeation and poor absorption. The
incorporation of nanotechnology in current and potential treatments present unique
opportunities for the delivery of therapeutic agents with increased specificity, lower toxicity
and controlled release. In this review, we outline the proposed pathogenesis, current diagnosis
and treatment methods of AD, and discuss recent advancements in nanomaterial-based systems
that target major hallmarks of AD through different mechanisms, including targeted drug
delivery, inhibition of Aβ aggregation, delivery of neuroprotective agents and Aβ removal
from the blood.
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1. Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease characterised by progressive memory and
cognitive decline. As of 2022, The World Health Organisation estimates the global prevalence of
dementia to be 55 million cases, with AD accounting for 60-70% of all cases [1]. Furthermore, the
number of dementia cases is predicted to rise to 152.8 million in 2050 [2], exacerbating the
overwhelming burden of disease associated with dementia. Therefore, the management and treatment
of AD have become an increasingly pressing concern. Despite extensive research efforts aimed at
reversing the progression of AD, current medications only provide symptomatic treatments that
provide short-term relief. It is believed that both genetic and environmental factors can influence the
development of AD. Most notably, the apolipoprotein E4 (ApoE4) is believed to be the most prevalent
genetic risk factor for AD, where inheriting the ε4 allele can increase the risks of developing AD by 3
times in heterozygotes and by 15 times in homozygotes [3]. However, a comprehensive understanding
of the causes, pathology and mechanism of AD is yet to be established. There are various hypotheses
postulating the pathogenesis of AD, including the cholinergic, amyloid cascade, tau
hyperphosphorylation and neuroinflammation hypotheses.

The 2nd International Conference on Biological Engineering and Medical Science
DOI: 10.54254/2753-8818/4/20220532

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

119



Acetylcholine (ACh) is a neurotransmitter produced through the synthesis of acetyl coenzyme and
choline, with enzyme choline acetyltransferase (CAT) acting as a catalyst. The normal production and
functioning of ACh are critical in maintaining working memory, synaptic plasticity, learning and
attention. The cholinergic hypothesis postulates that damages and dysfunction in the cholinergic
neurons found in the basal forebrain, along with decreased cholinergic neurotransmission in the
cerebral cortex are the contributing factors to the memory impairment and other cognitive symptoms
seen in AD.

Amyloid-β (Aβ) accumulation is a pathological hallmark of AD. Aβ peptides can aggregate into
various structures, including soluble Aβ oligomers, insoluble Aβ fibrils and large Aβ plaques. While
early theories postulate that Aβ plaque formation leads to neurotoxicity, synapse loss,
neurodegeneration, and consequently dementia, later studies have found Aβ oligomers to have much
greater toxicity compared to Aβ plaques [4]. Aβ deposition and oligomerisation can develop due to
elevated Aβ production combined with insufficient Aβ clearance from the brain, resulting in pathology
associated with AD [5]. Aβ deposition could trigger astrocyte and microglial activation, leading to
reactive oxygen species (ROS) generation through the pro-inflammatory ERK (extracellular signal-
regulated kinase) signalling pathway activation, resulting in neuronal damage [6].

Tau is a protein involved in the stabilisation of axonal microtubules. In AD, tau can undergo
hyperphosphorylation, leading to reduced affinities and detachment from the microtubules along with
conformational change that promotes aggregation [7]. Hyperphosphorylated tau can aggregate into
insoluble neurofibrillary tangles (NFTs). Tau is considered as a key biomarker in AD, as tau
hyperphosphorylation and NFT accumulation can lead to structural damages to the microtubules in the
axons, which can result in compromised axonal transport and synaptic function.

The current diagnosis of AD mostly relies on the exclusion of other possible conditions that can
present with similar symptoms. Neuropsychological evaluations can be conducted to assess the
cognitive functions, including memory, language ability, executive functions, visual spatial abilities
and everyday function [8]. The diagnosis of AD can be aided by imaging techniques such as
computerized tomography (CT) and magnetic resonance imaging (MRI). Structural changes of the
brain can be visualised using MRI, where hippocampal atrophy has been linked to neuronal
degradation [9]. Additionally, visualisation of the cortical thickness may aid in the diagnosis of AD, as
studies have found that cortical thinning can indicate neuronal loss, in particular, the cortical thickness
of the media temporal lobes is most severely reduced in AD brains [10]. However, some of the
aforementioned characteristics are not AD-specific. For instance, hippocampal and cortical volume
loss can also be observed in other neurodegenerative diseases, such as Parkinson’s Disease. [11]. Only
post-mortem histopathological examinations of the brain can provide a definitive diagnosis, where the
presence of NFTs and Aβ can be confirmed. In 2020, the U.S. Food and Drug Administration (FDA)
approved of flortaucipir, a radioactive probe that can bind to tau fibrils to be used in the identification
of NFTs. Studies have revealed the ability to visualise the density and distribution of tau pathology
with increased specificity and sensitivity when flortaucipir is used in positron emission tomography
(PET) imaging [12].

Cholinesterase inhibitors donepezil, rivastigmine, galantamine and the glutamate antagonist
memantine can be prescribed to attenuate the symptoms of AD. In 2021, the Aβ-directed monoclonal
antibody aducanumab received FDA approval for treating mild cases of AD. However, its
effectiveness remains controversial due to unclear clinical benefits, drug efficacy and safety concerns
[13]. In addition, most of the currently approved drugs are administered via the oral route in the form
of tablets, which may have drawbacks such as poor absorption and degradation in the digestive tract,
difficulties in blood-brain barrier (BBB) permeation and poor control over the dosage that reaches the
brain.

The tight junctions of the microvascular endothelial cell lining in the cerebral capillary walls form
the BBB [14]. The presence of various cell types (astrocytes, pericytes, microglia and endothelial cells)
and the high selectivity of the BBB maintain a highly controlled environment in the brain. The entry of
pathogens, large or hydrophilic molecules and the diffusion of solutes in the blood is restricted,
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whereas some small molecules (such as O2 and CO2) can move across the BBB through diffusion.
Despite this, only approximately 2% of all small molecules can cross the BBB [14]. Therefore, due to
difficulties in crossing the BBB and the removal of drugs by efflux pumps, drug delivery into the brain
via the oral and intravenous routes is particularly challenging. Nanoparticles present unique
opportunities in crossing the BBB owing to the flexibility in the modifications of their sizes, shapes,
surfaces and physiochemical properties based on different synthesis and functionalisation processes.
Nanoparticles are small particles (typically 1 to 100 nm in diameter) that can be synthesised from a
range of organic, inorganic and carbon-based materials. Nanoparticles show size-dependent
permeation across the BBB. A 2020 study investigated the optimal brain delivery size using gold
nanoparticles enhanced by focused-ultrasound-induced BBB opening. It was reported that
nanoparticles ranging from 3 to 200 nm are able to permeate through the BBB, and while smaller
nanoparticles show greater permeation across the BBB, larger nanoparticles (200 nm) show greater
accumulation in the brain due to slower clearance from the blood [15]. Furthermore, different
functionalisation and conjugation strategies, for instance, the incorporation of specific ligands, have
been shown to improve the targeting effects of drug delivery nanosystems. Here, we review various
nanosystems that have been proposed as potential therapeutic agents against AD and summarise their
key properties (Table 1).

Table 1. Summary of the key properties of the nanoparticles discussed in this review.

Type of
nanoparticles

Main mechanism Size (nm) Encapsulation
efficiency (%)

Reference

GH-loaded flexible
Liposomes

Drug delivery 112 ± 8 83.6 ± 1.8. [17]

Cu/exo-liposomes Drug delivery 200 93.60 ±4.26 [19]

Ang2-ICA/TSIIA
liposomes

Drug delivery 111.26 ± 11.65 92.45 ± 3.20 [21]

CHG NPs Inhibition of Aβ
fibrillisation

110.4 ± 15.6 – [23]

Chr-Chi NPs Drug delivery 100-120 73.52 ± 0.31 [24]

Cs@LT-PLGA NPs Drug delivery 142.3 ± 2.57 83.97 ± 1.03 [28]

AuNPs Anti-inflammatory and
ROS-scavenging
activities of AuNPs

20 – [29]

Au@TPMs Delivery of therapeutic
bioactive peptides

3.5 ± 0.8 and
13.5 ± 1.3

– [33]

Bucladesine/SPIONs Drug delivery 20 – [36]

MCNAs Magnetic
extracorporeal Aβ

removal

330 – [37]
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2. The use of nanoparticles as potential treatments of alzheimer’s disease

2.1. Liposomes
Liposomes are small, spherical vesicles that contain one or multiple phospholipid bilayers, which can
be synthesised from cholesterol or non-toxic phospholipids. Due to the amphipathic properties of
phospholipids, liposomes can undergo self-assembly in an aqueous medium. This mechanism relies on
the hydrophobic interactions between water and the non-polar hydrophobic tails, where the polar
hydrophilic heads face the water and the tails are shielded from water, forming the exterior and the
interior of the lipid bilayer respectively. The surface and structure of liposomes can be modified
relatively easily to incorporate important physicochemical properties, such as increased specificity and
the ability to carry both hydrophilic and lipophilic drugs. For instance, it has been shown that
PEGylation on liposomal surfaces can improve the pharmacokinetics and pharmacodynamics of the
liposomal drug delivery systems due to greater stability and retention time, as well as decreased levels
of enzymatic degradation and immunogenicity [16]. Furthermore, targeting molecules such as
antibodies and cell-penetrating peptides can be conjugated onto the surface of liposomes to increase
specificity and lower cytotoxicity, hence potentially reducing side effects for AD patients.

In an earlier study conducted in 2012, Li et al. determined the pharmacokinetic efficiency of
acetylcholinesterase (AChE) inhibition following treatment using galantamine hydrobromide (GH)
loaded flexible liposomes [17]. In this study, GH was encapsulated and transported into the brain
using flexible liposomes as drug carriers for AD. Due to the increased fluidity in the liposomal
membrane, flexible liposomes have been shown to enhance the entrapment efficiency, transcutaneous
drug retention and depth of penetration in vivo [18]. To prepare the GH-loaded flexible liposomes, a
thin-film homogenisation method was used, and GH was dissolved in aqueous propylene glycol (PG),
which acts as a solvent and an edge activator that increases the liposomal membrane fluidity. The
entrapment efficiency was calculated to be 83.6 ± 1.8%. Further, the effectiveness of AChE inhibition
was tested in vivo using rats, where rats underwent intranasal treatment of GH-loaded (3mg/kg)
flexible liposomes for 10 days. Control groups were introduced to compare the AChE activity after
administration of aqueous GH of varying degrees of encapsulation via different routes, including a
group with no treatment, a group that underwent oral administration of aqueous GH solution (3 mg/kg),
a group that underwent intranasal administration of GH of the same concentration, and a group was
intranasally administered a mixture solution of GH and liposomes. The inhibition of AChE activity
was measured quantitatively using a colorimetric method, where spectrophotometry is used to
determine the rate at which AChE hydrolyses the acetylcholine iodide substrate into thiocholine [18].
AChE activity assays of rat brain homogenates reveal the greatest inhibition in intranasal
administration of GH-loaded liposomes, followed by the intranasal administration of the mixture
solution, the intranasal administration of aqueous GH, the oral administration of aqueous GH and the
group that received no treatment (Figure 1a). Moreover, it was found that a significantly larger amount
of GH reached the brain in a shorter amount of time when the GH-loaded liposomes are delivered
intranasally, with the maximum concentration (14 µg/mL) occurring 0.75 hours after the treatment.
Subsequently, the cytotoxicity of the treatment was determined using lactate dehydrogenase (LDH)
assay, where increased LDH levels indicate greater cell damage. GH-loaded liposomes displayed LDH
levels similar to normal cells, however, the cytotoxicity can potentially be reduced further by
improving the entrapment efficiency. This study shows great potential in enhancing AChE inhibition
and reducing cytotoxicity. However, to enhance the amount of GH that reaches the brain and hence
achieve maximum AChE inhibition, a higher entrapment efficiency is required.

In 2021, Fernades et al. reported a novel lipid formulation that can be used to synthesise exosome-
like liposomes (exo-liposomes) [19]. It was found that the exo-liposomes could be loaded with
curcumin (Cur), forming a delivery system that has shown neuroprotective effects against oxidative
stress and amyloid-β accumulation. Curcumin is a hydrophobic polyphenol that exhibits anti-
inflammatory and antioxidant properties [19]. In the study, PEGylated, curcumin-loaded exosome-like
liposomes (Cur/exo-liposomes) were synthesised using various lipids, including cholesterol,
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sphingomyelin, dipalmitoylphosphatidylcholine (DPPC) and PEG-ceramide. The entrapment
efficiency was determined using fluorescence microscopy. A higher entrapment efficiency was
obtained compared to that reported by Li et al., achieving around 88% without the addition of 1,2-
Dioleoyl-3-trimethylammonium propane (DODAP) and 94% with DODAP, as it has been reported
that DODAP improves the stability of encapsulation [20]. A range of cells were exposed to different
concentrations of curcumin with and without DODAP to test for cytotoxicity in vitro, including the
neuroblastoma cell line derived SH-SY5Y cells, mouse fibroblasts L929 and mouse microglia BV2.
The cell viability was measured using resazurin reduction assays, and damages to the membrane
integrity were monitored using trypan blue assays. No cytotoxicity or membrane damage were
detected in the SH-SY5Y cells after exposure to the Cur/exo-liposomes of the selected concentrations
([curcumin] = 20 μM, 8 μM; [liposomes]= 200 μM, 40 μM) for 24 hours. Similarly, no cytotoxicity or
interference to cell metabolic activity were detected for L929 cells. Haemolysis assays were also
carried out to study the potential interactions between Cur/exo-liposomes and erythrocytes. None of
the loaded or empty exo-liposomes with curcumin concentration under 500 μg/mL (with or without
DODAP) induced haemolysis, which is consistent with the data obtained from the cytotoxicity assays.
Further, neuroprotective effects of Cur/exo-liposomes against oxidative stress were assessed. BV2
cells incubated with encapsulated curcumin showed greater viability than BV2 cells incubated with
free curcumin when subjected to the oxidative-stress-inducing-agent tert-butyl hydroperoxide (t-BHP)
(Figure 1b). While further testing and animal studies need to be conducted to study the
immunogenicity, distribution and uptake of curcumin in the brain, and effective dosage of Cur/exo-
liposomes before clinical translation, the results show promising potential of Cur/exo-liposomes owing
to their biocompatibility, low cytotoxicity and neuroprotection against oxidative stress.

In a latest study, Wang et al. developed and assessed an icariin (ICA) and tanshinone IIA (TSIIA)
delivery liposome nanosystem that has potential therapeutic applications against AD [21]. The
nanosystem consists of liposomes modified with the ligand Angiopep-2 (amino acid sequence:
TFFYGGSRGKRNNFKTEEY), which is an oligopeptide that can specifically bind to the low-density
lipoprotein receptor-related protein 1 (LRP1). LRP1 are highly expressed in the brain and on the BBB,
which enables the entry of Angiopep-2 modified liposomes across the BBB via LRP1-mediated
transcytosis. An encapsulation efficiency of 92.45 ± 3.20% was obtained for the Angiopep-2-modified
liposomes loaded with ICA and TSIIA (Ang2-ICA/TSIIA liposomes), which is similar to that reported
by Fernades et al. [19]. The intracellular distribution of liposomes in mouse brain endothelial cell line
were determine by loading 6-coumarin, the green fluorescent dye into the liposomes and measuring
the intracellular fluorescent intensity after incubation. Angiopep-2-modified liposomes consistently
showed significantly greater cell uptake than the unmodified ones, demonstrating how the binding
between Angiopep-2 and LRP1 can potentially facilitate and improve intracellular drug accumulation.
Further, the neuroprotective effects were assessed through a series of imaging, cognitive and
behavioural tests on APP/PS1 AD-expressing double transgenic mice. Not only did the APP/PS1 mice
that received the Ang2-ICA/TSIIA liposome treatment show the greatest reduction of cortical and
hippocampal Aβ plaque (Figure 1c), significant inhibition of neuroinflammation, oxidative stress and
apoptosis was observed in mice that received intravenous injections of Ang2-ICA/TSIIA liposomes.
This has likely contributed to their improved cognitive performance, which was confirmed with
Morris water maze experiments, in which mice treated with Ang2-ICA/TSIIA liposomes exhibited
enhanced learning and memory ability.
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Figure 1. a) GH-loaded flexible liposomes (group 5) show the greatest AchE inhibition, achieving a
reduction of approximately 84.6% compared to the group that received no treatment (group 1).
Intranasal administration (groups 3-5) is more effective compared to oral administration (group 2) in
AChE inhibition. Greater degrees of GH encapsulation (group 5 > group 4 > group 3) correlate with
greater AChE inhibition. b) Significant increase in cell viability can be observed in all curcumin- exo-
liposomes treated groups regardless of the presence of DODAP, however, 40 µM exo-liposomes with
DODAP show the greatest cell viability after exposure to t-BHP. Groups where DODAP is present
show greater cell viability. ROS generation is reduced by exo-liposomes with/without DODAP;
however, the lowest ROS levels are seen in Cur/exo-liposomes 20 µM without DODAP. c)
ICA/TSIIA treatment reduced the Aβ1–42 expression. Greater specificity, i.e., the conjugation of the
specific angiopep-2 ligand correlates with greater reduction in the expression of Aβ1–42.

2.2. Chitosan
Chitosan is a polysaccharide chitin derivative that can be produced through deacetylation. Chitosan-
based nanoparticles exhibit mucoadhesive properties that arise from the electrostatic interactions
between the cationic chitosan and the anionic mucus components and the mucosal epithelium.
Additionally, due to its permeation enhancing effects, chitosan can penetrate through the tight
junctions of the epithelial cells via paracellular or transcellular transport [22], potentially improving
and prolonging the absorption of anti-AD drugs. Therefore, owing to their biocompatibility,
biodegradability, nontoxicity and ease of preparation, there has been increased research on the
applications of chitosan nanoparticles as potential treatments of AD.

In a 2021, Wang et al. reported a theragnostic system where co-assembled chitosan-hyaluronic acid
was cross-linked with glutaraldehyde (forming CHG NPs), in turn enabling the targeting and
inhibition of Aβ fibrillisation [23]. Interestingly, fluorescent imaging assays found that CHG NPs not
only showed binding affinities towards Aβ fibrils, but also Aβ oligomers both in vitro and in vivo,
highlighting the possibility of early AD detection using CHG NPs, prior to Aβ fibrillisation and plaque
formation. The in vitro inhibition of Aβ40 aggregation was monitored using thioflavin T fluorescence
assay, which revealed that CHG NPs at low concentrations had little inhibitory effects on Aβ40
aggregation (only up to 25% inhibition). However, at high concentrations, significant reduction in
Aβ40 aggregation was observed (Figure 2a), indicating the binding between the free Aβ monomers and
CHG NPs, which could prevent the self-assembly of Aβ monomers into Aβ fibrils. Atomic force

The 2nd International Conference on Biological Engineering and Medical Science
DOI: 10.54254/2753-8818/4/20220532

124



microscopy (AFM) observed no Aβ fibril formation. The in vivo assay of Aβ fibrillogenesis inhibition
using Aβ3−42-expressing Caenorhabditis elegans produced results consistent with the in vitro data.
Furthermore, MTT assays revealed a 90% cell viability for higher concentrations ([CHG NPs] =720
μg/mL), while no significant effect was observed on cell viability for lower concentrations ([CHG NPs]
<180 μg/mL). While the effects of CHG NPs on oxidative stress, tau neurofibrillary tangles and
neuroprotection need to be further investigated, this study provides new insights into the developments
in AD diagnosis and treatment.

Saleem et al. synthesised chitosan nanoparticles loaded with chrysin (Chr-Chi NPs) that exhibit
neuroprotective properties and inhibition of Aβ aggregation in zebrafish [24]. Chrysin (5,7-
dihydroxyflavone) is a phytochemical that has been reported to display anti-inflammatory properties
that result in the downregulation of cyclooxygenase-2 (COX-2) activity via the interleukin-6 (IL-6)
signalling pathway [25]. Moreover, Mantawy et al. reported the ability of chrysin to downregulate
elevated caspase-3 activity associated with doxorubicin-induced cardiotoxicity via the suppression of
the p53 pathway [26]. Interestingly, the inhibition of caspase-3 expression has been shown to reduce
synaptic dysfunction in mice that exhibit AD-like phenotypes [27], which illustrates the potential for
chrysin to inhibit neuronal apoptosis. In this study, Aβ1−42 oligomers were intraventricularly injected
into the telencephalon of the zebrafish to induce Aβ toxicity. Compromised memory retention,
learning and comprehension abilities were observed and confirmed with a series of behavioural assays.
An entrapment efficiency of 73.52 ± 0.31% was obtained, which is relatively low compared to the
entrapment efficiencies of the liposome NPs discussed in this review [17, 19, 21]. Toxicity analysis
revealed no morphological or behavioural abnormalities in zebrafish treated with 1 mg/L Chr-Chi NPs
(2 μM, 0.2% Chi NPs) administered via the oral route. A significant reduction of ROS generation
(measured by fluorescence in brain homogenates) was seen in zebrafish treated with Chr-Chi NPs
compared to the control (ROS generated by and Aβ1−42, Figure 2b). Further, increased synaptic
integrity and plasticity (measured by synaptophysin levels) were observed in zebrafish treated with
Chr-Chi NPs, illustrating the protective effects of this formulation on synapses and Aβ1−42-induced
neurodegeneration.

In 2020, Dhas et al. investigated the use of chitosan as a coating material on lutein-loaded PLGA
nanoparticles (Cs@LT-PLGA NPs) for the suppression of oxidative stress in AD [28]. Lutein (β, ε-
carotene-3,3′-diol) is a carotenoid that can exhibit antioxidant and anti-inflammatory properties.
However, because of its lipophilic nature, lutein has low solubility in water, which contributes to low
absorption and bioavailability. Additionally, studies have shown that lutein is susceptible to thermal,
oxidative and photo-degradations. Therefore, encapsulation strategies are needed to address the
aforementioned issues. Chitosan was used to enhance mucoadehsion and permeation of the
nanoparticle formulation via intranasal delivery. An encapsulation efficiency of 83.97 ± 1.03% was
obtained for the Cs@LT-PLGA NPs and a uniform coating of chitosan was observed using TEM.
Results from the release study showed an initial burst release of lutein for uncoated LT-PLGA NPs,
where 25.71 ± 1.35% of the lutein content was released after 6 hours. On the other hand, Cs@LT-
PLGA NPs showed a slower, but more sustained release, where no burst release was observed, with
70.12 ± 1.25% of lutein content being released after 96 hours. Further, in vivo toxicity study showed
no mortality or toxicity-related pathologies in mice that underwent intranasal administration of
Cs@LT-PLGA NPs, which is consistent with the in vitro cell viability assay. Antioxidant assays
demonstrated significant increase in ROS scavenging activities at lower concentrations of Cs@LT-
PLGA NPs (5µg/mL), however, at higher concentrations (>5µg/mL), decreased cell viability due to
ROS generation was observed (Figure 2c).
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Figure 2. a) The inhibitory effects of CHG NPs of different concentrations on Aβ42 aggregation at
high concentrations. Aβ42 aggregation is reduced at all concentrations of CHG NPs, with the greatest
inhibitory effects occurring at 720 µg/mL of CHG NPs. b) Chr-Chi NPs significantly reduce Aβ-
induced ROS generation compared to the Aβ group, which did not receive treatment. Chr-Chi NPs
generate little ROS compared to the control group. c) The greatest ROS-scavenging activities can be
seen in 5 mM Cs@LT-PLGA NPs, indicated by increased superoxide dismutase (SOD) and decreased
catalase (CAT) levels. Similar trends can be seen in 10 mM Cs@LT-PLGA NPs. However, at 20 mM,
the SOD and CAT activities approach the same level as the hydrogen peroxide control due to ROS
generation.

2.3. Gold nanoparticles
Gold nanoparticles (AuNPs) play a major role in nanomedicine owing to their unique physiochemical
and optical properties, which are able to be modified by altering the sizes and shapes of AuNPs. Due
to the ease of synthesis and functionalisation, as well as high biocompatibility, AuNPs have gained
great interest in their applications in gene and drug delivery, photothermal therapy for cancer and in
medical imaging.

In 2019, dos Santos Tramontin et al. studied the ability of AuNPs to reverse okadaic-acid (OA)-
induced cerebral tissue damage in rats [29]. In this study, intracerebroventricular injections of OA
were administered to rats, which induced AD-like pathologies, including neuroinflammation,
decreased brain-derived neurotrophic factors (BDNF) and nerve growth factors β (NGF- β), oxidative
stress, and Tau hyperphosphorylation in the cerebral cortex and hippocampus. Following the OA
injections, the rats received intraperitoneal injections of 20 nm AuNPs every 48 hours for 21 days.
Neuroinflammation was evaluated through pro-inflammatory cytokines interleukin (IL)-1β and TNF-α
levels, along with anti-inflammatory cytokines IL-4 levels. Results showed elevated IL-1β and TNF-α
levels in rats injected with OA, and rats injected with OA followed by AuNP treatment (OA-AuNP
group). The correlation between AuNP treatment and increased IL-1β was investigated in a 2022 study
[30]. The study found that gold nanorods induced NLRP3 inflammasome pathway activation, which
involves the production of the active protease caspase-1 and cleavage of pro-IL-1β to produce
bioactive IL-1β. Despite substantial research on the role of IL-1β in acute neuroinflammation, the
effects of chronic IL-1β overexpression in neurodegeneration are lesser-known. Several studies have
found that IL-1β-mediated neuroinflammation potentially attenuates AD pathology through microglial
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phagocytosis of Aβ plaque and insoluble Aβ1–40 peptides following chronic overexposure to IL-1β [31].
Therefore, since results obtained by dos Santos Tramontin et al. only consider the effects of AuNPs on
IL-1β and TNF-α levels over a 21-day period, the long-term effects and role of AuNPs in
neuroinflammation need further investigation. Moreover, increased cortical and hippocampal IL-4
levels were observed in the AuNP treatment group compared to the OA group. This suggests increased
anti-inflammatory activities against elevated pro-inflammatory signalling, since IL-4 is known to
inhibit IL-4 and TNF-α production [32]. The cortical and hippocampal levels of BDNF and NGF- β in
the treatment and control groups were determined using enzyme-linked immunosorbent assays
(ELISA). Decreased BDNF levels can be seen in the OA-treated hippocampus and cortex
homogenates compared to the control groups (sham and AuNP-treated). Interestingly, similar BDNF
levels are the OA group and the OA-AuNP group. However, rats treated with AuNPs showed
improved cognitive performance in the Barnes maze task compared to the OA-treated group, which
measured the escape latency and the time spent inside the target quadrant. NGF- β levels followed a
similar pattern, with similar cortical and hippocampal levels between the OA group and the OA-AuNP
group. OA-induced oxidative stress was measured by the levels of antioxidant compounds, including
superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). Results showed increased
cortical and hippocampal SOD (Figure 3a), CAT and GSH activities in OA+AuNP group compared to
the OA group, where more pronounced increase occurred in the hippocampus. This demonstrates the
ROS-scavenging ability of AuNPs against free radicals including superoxide and hydroxyl anions, as
well as the capacity for AuNPs to improve the antioxidant activities of SOD, CAT and GSH.

In a 2021 study, Zhang et al. investigated the neuroprotective effects of maize tetrapeptide-
anchored gold nanoparticles [33]. Various studies have reported the anti-inflammatory and antioxidant
properties of bioactive peptides. For instance, He et al. (2022) found that peptides derived from millet
bran significantly reduced the TNF-α, IL-1β and prostaglandin E2 activities in vivo and in vitro [34].
Moreover, a 2018 study reported the isolation of bioactive peptides from black soybean, which
showed the ability to scavenge free radicals [35]. This demonstrates the exciting potential of bioactive
peptides in AD management and treatment. In the 2021 study, thiolated maize tetrapeptides (TPMs,
amino acid sequence: Leu-Asp-Tyr-Glu) were anchored to the surfaces of AuNPs (3.5 and 13.5 nm).
No cytotoxicity was observed after PC12 cells were incubated with Au@TPMs, since MTT assays
showed no difference in cell viability between the 3.5/13.5 nm Au@TPM groups and the control
group. Interestingly, the cells treated with 3.5 nm Au@TPM showed similar levels of inhibition in L-
glutamic-acid-induced apoptotic activities as donepezil hydrochloride (DH), while 13.5 nm Au@TPM
were observed to have slightly lower inhibitory effects. Similarly, ROS study showed greater
inhibition of L-glutamic-acid-induced ROS accumulation in both 3.5 nm and 13.5 nm Au@TPM
treated cells compared to the control, however, the greatest inhibitory effects were seen in DH-treated
cells. In vivo studies were also conducted, where AD-like pathology was induced in mice through
daily subcutaneous injections of D-galactose and intragastric injections of aluminium chloride for 60
days. 3.5 nm and 13.5 Au@TPM treatments were injected intragastrically in the treatment group for
16 days. Significant increase was seen in the acetylcholine (ACh) and choline acetyltransferase (ChAT)
levels, whereas AChE levels were significantly decreased. Notably, at high concentrations (1 mg/kg),
Au@TMP treatments achieved similar cholinergic and antioxidant effects as DH. Owing to these
therapeutic effects, the treatment group exhibited enhanced performance in the Morris water maze
experiment, showing the greatest reduction in escape latency when 1 mg/kg of 3.5 nm Au@TMP was
administered (lower than that achieved by DH-treated mice). Moreover, increased levels of antioxidant
enzymes SOD and GSH-Px were detected following the treatment (Figure 3b).
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Figure 3. a) AuNPs increase the hippocampal and cortical SOD activities compared to the OA group,
a greater increase can be seen in the hippocampus. Additionally, in the hippocampus, SOD activity
levels of the OA+AuNP group exceeded that in the sham group. b) Au@TPM treatment significantly
increased the SOD activities in the hypothalamus and the serum. No significant differences are
observed in the SOD activities in groups treated with 3.5 nm Au@TPM (S) and 13.5 nm Au@TPM
(L). c) Groups treated with intrahippocampal administration of SPIONs at 0.01µg/kg show the lowest
ROS levels and greatest plaque reduction. Dose-dependent effects can be seen, where lower
concentrations appear to be effective in reducing ROS and plaque than higher concentrations. d)
MCNAs significantly reduced ROS levels in the plasma to around 130 A.U., which is lower than the
ROS levels seen in the sham group. The concentration of plasma Aβ is also significantly reduced after
the MCNA treatment.

2.4. SPIONs
Supermagnetic iron oxide nanoparticles (SPIONs) are most commonly made of small maghemite (γ-
Fe2O3) or magnetite (Fe3O4) crystals that typically have a size under 100 nm. In recent years, various
diagnostic and therapeutic uses of SPIONS have been explored and applied, including their role as an
MRI contrast agent, and as drug carriers for targeted cancer and neurodegenerative disease treatment.

In 2021, Sanati et al. studied the role of SPIONs in inhibiting Aβ fibrillisation, along with learning
and memory functions in rats [36]. 20 nm PEGylated SPIONs and non-PEGylated SPIONs conjugated
with the cAMP agonist bucladesine were administered through either intrahippocampal or
intraperitoneal routes in Aβ1-42-treated rats. Significant dose-dependent reductions in the average
escape latency were seen in rats that received less concentrated SPIONs intrahippocampal or
bucladesine+SPIONs intraperitoneal treatments, illustrating the ability for the treatment to alleviate
spatial memory deficits. Similar trends were seen in the inhibitory effects of SPIONS on oxidative
stress, where 0.01 µg/kg intrahippocampal SPION treatment and 1µg/kg intraperitoneal
bucladesine+SPION treatment significantly reduced the levels of key markers of oxidative stress,
including ROS (Figure 3c) and malondialdehyde (MDA). Further, 0.01 µg/kg SPIONs greatly reduced
the BDNF levels in the Aβ-treated hippocampus, even slightly exceeding the BDNF levels in the
group that received no Aβ or SPIONs treatments. BDNF regulates neurogenesis, neuronal
differentiation, maintenance and synaptic plasticity, which are crucial to learning and memory.
Therefore, increased BDNF levels in AD-like brains could potentially ameliorate the decline in
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cognitive functions. SPIONs treatment also increased cAMP response element-binding protein (CREB)
levels in the hippocampus, which is associated with long-term memory formation, neuroplasticity and
spatial memory. Moreover, histological analysis measured the mean area of Aβ plaque in thioflavin-S-
stained hippocampi, which revealed Aβ plaque reduction in SPION-treated hippocampus, where the
most significant reduction was observed at lower SPION concentrations (0.01 µg/kg).

In a 2019 study, Kim et al. reported an innovative extracorporeal blood Aβ removal system using
core/shell structured supermagnetic magnetite (SPION) and ceria (CeO2) nanoparticle assemblies
(MCNAs) [37]. 10 nm SPIONs were synthesised and allowed to form large clusters (approximately
220 nm), which form the supermagnetic core of the MCNA. This enables the magnetic separation of
Aβ-containing-MCNA from the blood when placed in an external magnetic field. The SPIONs were
then coated with ceria nanoparticles, conjugated with Aβ-specific antibodies and underwent
PEGylation, reaching an overall size of approximately 330 nm. Ceria nanoparticles exhibit ROS
scavenging and antioxidant properties due to the Ce3+/Ce4+ redox reactions that occur on the surface of
the ceria lattice in the presence of ROS [38]. MTT assays revealed low cytotoxicity and high cell
viability after incubation with MCNAs, which is likely due to PEGylation and the large size of
MCNAs that inhibited cellular uptake. The ROS scavenging activities of MCNAs in vivo were
determined using 5XFAD transgenic mice that express AD-like amyloid pathology. SOD and CAT
activities were significantly reduced following the magnetic clearance of Aβ peptides from the blood
(Figure 3d). An average of 71% Aβ peptide capture efficiency was achieved and confirmed by
reductions in the plasma Aβ concentration and area of Aβ plaque in the cerebral cortex. However,
extracorporeal procedures are often invasive and pose risks of infections, especially considering the
age demographics of AD patients, who can be more susceptible to severe infections. Therefore,
although MCNA treatments showed promising results through the bypassing of the BBB and the
extracorporeal removal of Aβ peptides, the risks of infections associated with the procedures require
further investigation.

3. Conclusion
Being the 7th leading cause of death [1], growing concerns arise surrounding the social and financial
impacts of Alzheimer’s Disease. Accurate diagnosis and effective treatments of AD are yet to be
developed since the pathogenesis and disease mechanism of AD are not yet completely understood.
Therefore, further progress needs to be made in the identification of AD biomarkers through imaging
and laboratory tests to enable the early detection of AD. The highly selectivity of the blood-brain
barrier microvasculature and inadequate absorption via the oral route pose significant challenges in the
effective drug delivery into the brain in current symptomatic treatments of AD. The incorporation of
nanotechnology in treatment of AD could be particularly promising owing to the increased specificity
and unique physiochemical properties of nanoparticles. In recent decades, many nanoparticle-based
therapeutic agents have been proposed to target different aspects of AD, including targeted drug
delivery, delivery of antioxidant and anti-inflammatory agents, Aβ fibrillisation and aggregation
inhibitors, and Aβ removal from the blood. However, extensive animal and human trials need to be
conducted before the implementation of clinical treatment, and the long-term toxicity needs to be
studied, since current research mainly focus on examining the short-term cytotoxicity. In addition,
combination therapy that targets multiple hallmarks of AD can be explored further. Ultimately, future
directions lie in improving the delivery efficiency of current AD drugs, developing potential curative
treatments and advancing current diagnostic techniques in order to achieve early detection and
accurate diagnosis of AD.
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