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Abstract. The Chinese remainder theorem (denoted it as " the theorem" in this article) was 

originally an important theorem in number theory. It played a vital role in the integer solution of 

the congruence equation in ancient times. With the continuous development of the algebraic 

system, the theorem naturally has different forms. This paper will show some research and 

applications based on the theorem. For example, the theorem in polynomial form, the theorem 

in the form of group theory, the theorem on unitary rings, the theorem on polynomial ring 

modules, etc. It is not difficult to know that integers and polynomials are special rings, so this 

the two forms of the theorem are the theorems that can be covered on the unitary ring. In fact, 

the theorem in the form of group theory is also covered. This paper will elaborate the first three 

forms of the theorem and give their specific applications. 
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1.  Introduction 

The theorem comes from the mathematical classic of Sun Tzu. It gives a solution to congruence equation 

and has many applications in number theory. Cheng Dawei, a mathematician of the Ming Dynasty, gave 

a four-word formula for this solution in his 1593 "Comprehensive Collection of Mathematical Methods". 

After 1800, Western mathematicians Euler and Gauss also came to this theorem. In 1876, Mathiesen 

pointed out that Gauss's approach was consistent with Sun Tzu's. Later, Chinese remainder theorem has 

developed into a variety of algebraic systems and has many applications in theory and technology, 

especially in information technology. This paper will explain its different forms within the scope of 

Abstract algebra and give specific applications. 

The theorem in Number Theory can be proved by Euclidean algorithm or by the principle of the 

drawer theorem [1]. This article adopts the first method and provides its application in solving integer 

solutions of congruence equation system and solving higher-order congruence equations. The theorem 

in number theory can be used in real life, such as timing [2]. It also plays an important role in valuation 

theory [2]. 

With the development of polynomial theory, the theorem has also been extended to polynomials. The 

theorem in polynomial theory can be proved by construction [3]. It can be used to prove the construction 

of polynomials. The existence of Jordan Chevalley decomposition is a classic application [3]. In addition, 

it can also be used to prove Lagrange interpolation formula [4]. In fact, the polynomial K [x] on the field 

K and the Matrix polynomial K [A] on the field K can be seen as the extension ring of K, Therefore, 
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indefinite element x can be substituted by either any polynomial in K [x] or any polynomial of matrix A 

[5]. Therefore, Chinese remainder theorem can also be applied to the problem of matrix existence [6, 7]. 

With Abel and Galois' research on whether there are radical solutions to the unary Quintic equation, 

Abstract algebra has become a basic and important branch of algebra. It is not difficult to know that 

integers, all matrices M (K) on the number field K, and polynomials K [x] on the number field K are 

special unitary rings. It is natural to think that the theorem can be generalized to a more general form - 

the Chinese remainder theorem on a unitary ring [8]. This generalization not only includes three special 

cases, we also provide a solution for finding the square root of the residual class ring. This solution not 

only has applications in fields such as public key cryptography [9], but also can be used for decomposing 

additive finite p-groups (Although other methods such as module theory can be used to solve a more 

general case - the decomposition of finite Abel groups) [10]. 

It is natural to think that Chinese remainder theorem should be extended to other algebra theories. 

For example, Chinese remainder theorem on the module of Polynomial ring [11]. And use the Gröbner 
basis theory and method of module to find the polynomial vector that satisfies the Chinese remainder 

theorem of module, so as to find the solution of the congruence equation system on the module of 

Polynomial ring. In 1993, the concept of BCI semigroups was introduced in reference [12], which is a 

generalization of the concept of rings. In 1998, A further studied this type of algebraic system and 

introduced the concepts of IS algebra and I-ideals [13, 14]. In [15], it tries to extend the Chinese 

remainder theorem to IS algebra system and establishes the theorem of IS algebra. As an application, an 

isomorphism theorem for IS algebra also be given. 

2.  Theorems 

The following five theorems are five forms of Chinese remainder theorems. Theorem 1 and Theorem 2 

are the theorem in the form of number theory. Theorem 3 is the theorem in the polynomial form. 

Theorem 4 is the theorem in the form of group theory, and Theorem 5 is the theorem in the form of ring 

theory. Lemma 1 and Lemma 2 are used to prove the theorem in the form of ring theory, that is, Theorem 

5. 

Theorem 1. Suppose m = m1m2 … mk and m1,m2,…,mk are positive integers that are pairwise and 

mutually prime. Mi =
m

mi
  ,1 ≤ i ≤ k . Then for any positive integer c1 ,c2 ,…,ck , congruence equation 

system: 

{

𝑥 ≡ 𝑐1(𝑚𝑜𝑑𝑚1)

𝑥 ≡ 𝑐2(𝑚𝑜𝑑𝑚2)
…

𝑥 ≡ 𝑐𝑘(𝑚𝑜𝑑𝑚𝑘)

(1) 

has a solution 𝑥 = ∑ 𝑎𝑗
𝑘
𝑗=1 𝑀𝑖𝑀𝑖

′,where 𝑀𝑖
′(1 ≤ 𝑖 ≤ 𝑘) satisfy 𝑀𝑖𝑀𝑖

′ ≡ 1(𝑚𝑜𝑑𝑚𝑖). 

Proof: Since (𝑀𝑖, 𝑚𝑖) = 1, 𝑀𝑖
′ and 𝑦𝑖 can be found by rolling and dividing and 𝑀𝑖

′ , 𝑦𝑖, satisfy: 

𝑀𝑖𝑀𝑖
′ + 𝑦𝑖𝑚𝑖 = 1 (2) 

Thus 𝑀𝑖𝑀𝑖
′ ≡ 1(𝑚𝑜𝑑𝑚𝑖). This implies: 

𝑎𝑖𝑀𝑖𝑀𝑖
′ ≡ 𝑎𝑖(𝑚𝑜𝑑𝑚𝑖), 1 ≤ 𝑖 ≤ 𝑘 (3) 

By 𝑚𝑖𝑀𝑖 = 𝑚𝑗𝑀𝑗 = 𝑚, (𝑚𝑖, 𝑚𝑗) = 1, ⇒ 𝑚𝑖|𝑀𝑗, 𝑖 ≠ 𝑗. This implies: 

∑ 𝑎𝑗

𝑘

𝑗=1

𝑀𝑖𝑀𝑖
′ ≡ 𝑎𝑖𝑀𝑖𝑀𝑖

′ ≡ 𝑎𝑖(𝑚𝑜𝑑𝑚𝑖) (4) 

And (4) implies: 

∑ 𝑎𝑗

𝑘

𝑗=1

𝑀𝑖𝑀𝑖
′ ≡ 𝑎𝑖(𝑚𝑜𝑑[𝑚1, 𝑚2, … , 𝑚𝑘]) ≡ 𝑎𝑖(𝑚𝑜𝑑𝑚) (5) 
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𝑥 ≡ ∑ 𝑎𝑗

𝑘

𝑗=1

𝑀𝑖𝑀𝑖
′(𝑚𝑜𝑑𝑚) (6) 

Where formula (6) is the solution. 

Theorem 2. Suppose ( 𝑚1, 𝑚2) = 1  and 𝑚 = 𝑚1𝑚2, (𝑎1, 𝑚1)|𝑐1, (𝑎2, 𝑚2)|𝑐2 , the equation 

{
𝑎1𝑥 ≡ 𝑐1(𝑚𝑜𝑑𝑚1)
𝑎𝑥2 ≡  𝑐2(𝑚𝑜𝑑𝑚2)

  has solution. The solution is 𝑀1𝑀1
′ 𝑞1 + 𝑀2𝑀2

′ 𝑞2(𝑚𝑜𝑑𝑚)  and 𝑞1 =

𝑥1
𝑚1

𝑑1
𝑘1(𝑘1 = 1, … ) , 𝑞2 = 𝑥2

𝑚2

𝑑2
𝑘2(𝑘2 = 1, … ) , 𝑑1 = (𝑎1, 𝑚1), 𝑑2 = (𝑎2, 𝑚2) . 𝑥1, 𝑥2  are the 

particular solutions of 𝑎𝑥1 ≡ 𝑐1(𝑚𝑜𝑑𝑚1) ,𝑎𝑥2 ≡ 𝑐2(𝑚𝑜𝑑𝑚2) .𝑀𝑖
′  satisfies 𝑀𝑖𝑀𝑖

′ ≡ 1(𝑚𝑜𝑑𝑚𝑖), 𝑖 =
1, 2. 
Proof: Since (𝑎1, 𝑚1)|𝑐1, (𝑎2, 𝑚2)|𝑐2,𝑎1𝑥 ≡ 𝑐1(𝑚𝑜𝑑𝑚1) and 𝑥 ≡ 𝑐2(𝑚𝑜𝑑𝑚2) have solutions. 

The solution of 𝑎1𝑥 ≡ 𝑐1(𝑚𝑜𝑑𝑚1)  is 𝑞1 = 𝑥1
𝑚1

𝑑1
𝑘1(𝑘1 = 1, … )  . The solution of 𝑎𝑥2 ≡

𝑐2(𝑚𝑜𝑑𝑚2 is 𝑞2 = 𝑥2
𝑚2

𝑑2
𝑘2(𝑘2 = 1, … ). 

Hence {
𝑎1𝑥 ≡ 𝑐1(𝑚𝑜𝑑𝑚1)
𝑎𝑥2 ≡  𝑐2(𝑚𝑜𝑑𝑚2)

 and {
𝑥 ≡ 𝑥1 +

𝑚1

𝑑1
𝑘1(𝑚𝑜𝑑𝑚1)

𝑥 ≡ 𝑥2 +
𝑚2

𝑑2
𝑘2(𝑚𝑜𝑑𝑚2)

 have the same number of solutions and 

solutions {
x ≡ x1 +

m1

d1
k1(modm1)

x ≡ x2 +
m2

d2
k2(modm2)

 satisfies Preconditions for the Chinese Remainder Theorem. 

Hence the solution is 𝑥 = 𝑀1𝑀1
′𝑞1 + 𝑀2𝑀2

′ 𝑞2(𝑚𝑜𝑑𝑚) . 𝑀𝑖
′  satisfies 𝑀𝑖𝑀𝑖

′ ≡ 1(𝑚𝑜𝑑𝑚𝑖), 𝑖 = 1,2 . 

𝑞1 = 𝑥1
𝑚1

𝑑1
𝑘1(𝑘1 = 1, … ) , 𝑞2 = 𝑥2

𝑚2

𝑑2
𝑘2(𝑘2 = 1, … ). 

Hence the number of the solutions of {
𝑎1𝑥 ≡ 𝑐1(𝑚𝑜𝑑𝑚1)
𝑎𝑥2 ≡  𝑐2(𝑚𝑜𝑑𝑚2)

  is 𝑑 = 𝑑1𝑑2  and the solution is 𝑥 =

𝑀1𝑀1
′ 𝑞1 + 𝑀2𝑀2

′ 𝑞2(𝑚𝑜𝑑𝑚). 
Theorem 3. If {𝑓𝑖(𝑥)|𝑖 = 1,2, … 𝑛} are pairwise coprime polynomials, and 𝑎1(𝑥), 𝑎2(𝑥), … , 𝑎𝑛(𝑥) are 
n polynomials, then there has a polynomial 𝑔(𝑥), 𝑞𝑖(𝑥) (𝑖 = 1,2, … , 𝑛) such that 𝑔(𝑥) = 𝑓𝑖(𝑥)𝑞𝑖(𝑥) +
𝑎𝑖(𝑥) for each i [3]. 
Proof: Firstly, trying to prove there exists polynomials 𝑔𝑖(𝑥) s. t. for arbitrary i. 

𝑔𝑖(𝑥) = 𝑓𝑖(𝑥)𝑞𝑖(𝑥) + 1, 𝑓𝑗(𝑥)|𝑔𝑖(𝑥)(𝑖 ≠ 𝑗) (7) 

If this statement can be proved, just let 𝑔(𝑥) = ∑ 𝑎𝑖(𝑥)𝑔𝑖(𝑥)𝑛
𝑖=1  to finish the proof. Now construct 

gi as follows: Since 𝑓1(𝑥) and 𝑓𝑗(𝑥)(𝑗 ≠ 1) are mutually prime, there exists 𝑢𝑗(𝑥), 𝑣𝑗(𝑥) st. 
𝑓1(𝑥)𝑢𝑗(𝑥) + 𝑓𝑗(𝑥)𝑣𝑗(𝑥) = 1 (8) 

Let 

𝑔1(𝑥) = 𝑓2(𝑥)𝑣2(𝑥) … 𝑓𝑛(𝑥)𝑣𝑛(𝑥) = (1 − 𝑓1(𝑥)𝑢2(𝑥)) … (1 − 𝑓1(𝑥)𝑢𝑛(𝑥)) (9) 

It is trivial that g1(x) fulfils requirements. In the same way, gi(x) can be constructed. 
Theorem 4. Suppose 𝑚 = 𝑚1𝑚2 … 𝑚𝑠, and 𝑚1, 𝑚2, … , 𝑚𝑠 are pairwise prime positive integers. Then 

𝑍 𝑚𝑍 = 𝑍 𝑒1̅⁄⁄ ⨁ … ⨁ 𝑍 𝑒�̅�⁄ ≅ 𝑍 𝑚1𝑍⁄ ⨁ … ⨁ 𝑍 𝑚𝑠⁄ 𝑍.  �̅� = 𝑏1𝑒1̅ + ⋯ + 𝑏1𝑒�̅� ⟼ (𝑏1
̅̅̅, … , 𝑏𝑠)̅̅ ̅̅  [10]. 

Proof:  Assertion: 𝑍𝑒�̅� ≅ 𝑍 𝑚𝑖𝑍⁄  is a cyclic group of order m(𝑖 = 1, … , 𝑠). This means the order of ei̅ 

is mi . The proof of the assertion is as follows: (i)  𝑚𝑖 𝑒�̅� = 𝑚𝑖𝑒𝑖̅̅ ̅̅ ̅̅ = 𝑚𝑖𝑞𝑖𝑢𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑚𝑖𝑢𝑖̅̅ ̅̅ ̅̅ = 0̅ . This means 

when 𝑖 ≠ 𝑗,𝑞𝑗𝑒�̅� = 0̅ . (ii) If  𝑎𝑒𝑖̅̅ ̅̅ = 0̅, then for arbitrary x, since 𝑥 = ∑ 𝑏𝑖
𝑠
𝑖=1 𝑒�̅� . 

From (i),  𝑎𝑞𝑖 . �̅� = 𝑏1𝑎(𝑞𝑖𝑒1̅) + ⋯ + 𝑏𝑖𝑞𝑖(𝑎𝑒�̅�) + ⋯ + 𝑏𝑠𝑎(𝑞𝑖𝑒�̅�) = 0̅  . This means 𝑚|𝑎𝑞𝑖 . Since 

𝑞𝑖 =
𝑚

𝑚𝑖
, 𝑚𝑖|𝑎. This proves the order of ei̅ is 𝑚𝑖, 𝑍𝑒�̅� ≅ 𝑍 𝑚𝑖𝑍⁄ , 𝑏𝑒�̅� ⟼ �̅� (𝑖 = 1, … , 𝑠). It is not difficult 

to complete theorem proving by using assertions. 

Lemma 1. Suppose R is a unitary ring, and I and J are ideals that are mutually prime to R, then IJ + JI =
I ∩ J. In particular when R is unitaryIJ = I ∩ J [8]. 
Proof:  It is trivial that: 
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IJ =< {ab: a ∈ I, b ∈ J} >⊑ J ∩ I = I ∩ J (10) 

Since I ∩ J is closed for addition, IJ + JI is a subset of I ∩ J. 
Since I and J are prime, there exists i ∈ I, j ∈ J  st. i + j = 1 . For arbitrary k ∈ I ∩ J : k = 1k =

(i + j)k = ik + jk ∈ IJ + JI . Hence  I ∩ J  is a subset of IJ + JI , IJ + JI = I ∩ J . When R is a unitary 

ring IJ = JI, hence  IJ + JI = IJ. 
Lemma 2. Suppose R is a commutative monocycle, and  A1, … , An(n > 1) are pairwise prime ideals. 

Then A1, … , An−1 and Anare mutually prime and A1 … An = A1 ∩ … ∩ An [8]. 

Proof: When n = 2, just use lemma1 to complete proof. 

Suppose  n > 2, use lemma1, A1 ∩ A2 = A1A2 and A3 are prime. Hence  A1 ∩ A2 ∩ A3 = A1A2 ∩
A3 = (A1A2)A3. Continue in the same way. Finally, it is not hard to get that A1, … , An−1 and Anare 

mutually prime and A1 … An = A1 ∩ … ∩ An [10]. 

Theorem 5. Suppose A1, A2, … , An are the ideals of pairwise coprimes on a monoid R. Then for arbitrary 

a1, … , an ∈ R ,the set  x ∈ R: for all i = 1, … , n, x satisfies x ≡ ai(modAi)  is not empty, and is the 

residual class of module ⋂ Ai
n
i=1 .Besides,R (A1 ∩ A2 … ∩ An) ≅ R A1⁄⁄ ⨁ … ⨁ R An⁄  [8]. 

Proof: When n = 1. It is trivial. Next suppose n > 1. For i = 1,2, … , n, let Bi = A1 … Ai−1Ai+1An. Use 

lemma 2 Bi and Ai are prime, hence there exists xi ∈ Bi st. 1 − xi ∈ Ai. 

When 1 ≤ j ≤ n  and i ≠ j , xi ∈ Bi ⊑ Aj . Hence for i, j = 1,2, … , n , xi − δij ∈ Aj . Let  x0 =

∑ aixi
n
i=1  . For 1 ≤ j ≤ n ,x0 − aj = ∑ ai(xi − δij)ϵAij

n
i=1  . For arbitrary x ∈ R , it is trivial that x ≡

aj(modAj) (j = 1,2, … , n) if and only if x ≡ x0(modAj) also if and only if x − x0 ∈ ⋂ Ai
n
i=1 . For x ∈

R , define σ(x + ⋂ Ai
n
i=1 ) =< x + A1, … , x + An > . This is a mapping from R ⋂ Ai

n
i=1⁄   to 

R A1⁄ ⨁ … ⨁ R An⁄ . 

For arbitrary a1, … , an ∈ R, there exists one unique modulo ⋂ Ai
n
i=1  remainder class x + ⋂ Ai

n
i=1  st. 

for each j = 1, … , n , x ≡ aj(mod(Aj)  ie. x + Aj = aj + Aj . Hence σ  is bijective. For x̅ = x +

⋂ Ai
n
i=1 , x̅ = x + ⋂ Ai

n
i=1 ∈ R ⋂ Ai

n
i=1⁄ , because (x + Ai) + (y + Ai) = (x + y) + Ai and (x + Ai)(y +

Ai) = xy + Ai. 

It is not hard to verify σ(x + y) = σ(x + y̅̅ ̅̅ ̅̅ ̅) = σ(x̅) + σ(y̅),σ(x̅y̅) = σ(xy̅̅ ̅) = σ(x̅)σ(y̅). Hence A is 
a ring homomorphism. Hence R (A1 ∩ A2 … ∩ An) ≅ R A1⁄⁄ ⨁ … ⨁ R An⁄ . 

3.  Examples and discussion 

The following 12 examples are the application of the theorem in different forms. Among them, Examples 

1 to Example4 are the application of Theorem 1 and Theorem2, that is, the application of the theorem 

in the form of number theory. Examples 5 to Example7 are the application of Theory 3, that is, the 

application of the theorem in the form of polynomials to polynomials. Examples 8 to 10 are also 

applications of Theorem3, but in matrix theory. Example11 is the application of the theorem in the form 

of group theory, that is, the application of Theorem4. Example 12 is the application of the theorem in 

the form of ring theory, that is, the application of Theorem5. Lemma 3 is used to prove Example 7. 

By applying Theorem1 and Theorem2, it is not hard to obtain solution to some congruence equations. 

Some examples are as follows.  

Example 1. Find the integer solution of the equation x3 − 1 ≡ 0(mod15). 

Solution: Since 15 = 5 × 3  and (3,5) = 1 , x3 − 1 ≡ 0(mod15)  and {
x3 − 1 ≡ 0(mod5)

x3 − 1 ≡ 0(mod3)
    have the 

same solution. If x3 − 1 ≡ 0(mod3)   has an integer solution, the solution must be obtained in the 

complete residual system modulo 3, that is, in -1, 0, 1, and put them into equation x ≡ 1(mod3)  to 
obtain. In the same way, it can be known that the integer solution of x3 − 1 ≡ 0(mod5) is obtained in 
the complete residual system 0, 1, 2, and 3 modulo 5, and put it into the equation to get x ≡ 1(mod5). 

So {
x3 − 1 ≡ 0(mod5)

x3 − 1 ≡ 0(mod3)
 and {

x3 ≡ 1(mod5)

x3 ≡ 1(mod3)
 have the same solution. 
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Since {
x3 ≡ 1(mod5)

x3 ≡ 1(mod3)
 satisfies the precondition of the theorem, using the application of the theorem, 

it is not hard to obtain the integer solution of x3 − 1 ≡ 0(mod15) is x ≡ 1(mod15). 

Example 2. Solving congruence equations {

𝑥 ≡ 2(𝑚𝑜𝑑3)
𝑥 ≡ 3(𝑚𝑜𝑑5)
𝑥 ≡ 2(𝑚𝑜𝑑7)

. 

Solution:  m1 = 3 , m2 = 5 , m3 = 7 , and they are pairwise prime. m = 3 × 5 × 7 = 105 . M1 =
35 , M2 = 21 , M3 = 15 . By MiMi

′ ≡ 1(modmi) ⇒ M1
′ = −1, M2

′ = 1, M3
′ = 1.  We have 35 ≡

−1(mod3) ⟹ 35 × (−1) ≡ 1(mod3) . 21 ≡ 1(mod5) ⇒ 21 × 1(mod5) . 15 ≡ 1(mod7) ⇒ 15 ×
1 ≡ 1(mod7). 

𝑥 ≡ ∑ 𝑎𝑗

𝑘

𝑗=1

𝑀𝑖𝑀𝑖
′(𝑚𝑜𝑑𝑚) (11) 

Thus 𝑥 = 2 × 35 × (−1) + 3 × 21 × 1 + 2 × 15 × 1 = 23(𝑚𝑜𝑑105). Formula (11) is the solution. 

Example 3. Solving congruence equations {
2𝑥 ≡ 1(𝑚𝑜𝑑3)
3𝑥 ≡ 2(𝑚𝑜𝑑4)

. 

Solution: Because m1 = 3 ,m2 = 4 ,(2,3)|1 ,(3,4)|2  , the congruence equations 2x ≡ 1(mod3  and 
3x ≡ 2(mod4) have solutions, and the number of solutions is d1 = (2,3) = 1,d2 = (3,4) = 1. From 

Theorem 2, it can be known that the number of solutions of {
2x ≡ 1(mod3)
3x ≡ 2(mod4)

  is d = d1d2 = 1 . It is 

trivial that 2x ≡ 1(mod3)  has one particular solution x ≡ 2(mod3) , and 3x ≡ 2(mod4)  has one 
particular solutions x ≡ 2(mod4). 

It is trivial that M1 = 4 , M2 = 3 ,q1 = 2 ,q2 = 2.  Let M1M1
′ ≡ 1(mod3) , M2M2

′ ≡ 1(mod4) .Then 
it can be obtained that M1

′ ≡ 1(mod3) ,M2
′ ≡ 3(mod4) . Let M1

′ = 1 ,M2
′ = 3 , from lemma 1, the 

solution is x = M1M1
′ q1 + M2M2

′ q2(modm). Substitute it into the equation, it is not hard to obtain the 
solution is 1 × 4 × 2 + 3 × 3 × 2(mod12) i.e., the solution is x ≡ 2(mod12). 

Next is an application of the theorem in number theory in the valuation theory. 

Example 4. For arbitrary n p- valuation Vp1
, Vp2

, … , Vpn
 , ai ∈ Q (i = 1,2, … , n)  and arbitrary ε >

0, pt1 , pt2 , … , ptm.Then there exists b satisfies: (i) V∞(b − ai) = |b − a1| < ε;  (ii) Vpi
(b − ai) ≤ pi

−li 

(i = 1,2, … , n). 

Proof: Suppose m is the lowest common denominator of a1, … , an. Let Pl
Si = Vpi

(m), ri = li + si(i =

1, … , n) , r = max {1, r1, … , rn} . Using the theorem, it is not hard to find a c which satisfy:   c ≡

ma1(modp1
r), c2 ≡ ma2(modp2

r ), … , cn ≡ man(modpn
r ) i.e., Vpi

(c − mai) ≤ pi
−r,Vpi

(
C

m
− ai) ≤ pi

−li. 

Suppose q = (p1 … pn)r. Take the appropriate u, v ∈ Zst. |
C

m
 
1+uq

1+vq
− a| < ϵ. Then let b = |

C

m
 
1+uq

1+vq
−

a|, b satisfies the condition (i).  

By the property of p-distance Dp :max {(Dp(a, b), Dp(b, c)} ≥ Dp(a, c) ,Vpi
(b − ai) = Vpi

((b −

c

m
) + (

c

m
− ai)) ≤ max {Vpi

(b −
c

m
} = Vpi

(
c

m
− ai)} = Vpi

(
c

m
− ai) ≤ pi

−li(i = 1, … , n). 

The valuation theory is an important section of the field theory and an important tool for studying 

several important branches of modern mathematics, such as Algebraic number theory and commutative 

number theory. The above Example 1-3 is actually proof of the independence of valuation. 

In daily life, what we need to notice is often not certain integers but rather the remainder obtained by 

dividing these numbers by a fixed number. For example, suppose it is 9 o'clock in the morning, what 

time was it two hours ago? We will immediately receive the correct answer at 7am; so what time is it 

after thirteen hours? The formula is 9 + 13 − 12 = 10, which means 10 pm; What time will the watch 

pointer point to after 28 hours? The formula is (9 + 28) − (3 ×  12) = 1point. 
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The way to solve this problem is: if the current time is the time after B hours, just calculate  A + B =
C (mod12) The remainder C is the watch hours [2]. Using the Chinese remainder theorem in polynomial 

form, it is not hard to Lagrange interpolation formula. 

Example 5. For function 𝑓(𝑥) = ∑ 𝑎𝑖(𝑥)𝑀𝑖(𝑥) = ∑ 𝑎𝑗 ∏
𝑥−𝑏𝑖

𝑏𝑗−𝑏𝑖

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1 (𝑖 ≠ 𝑗) , where 𝑀𝑖(𝑥) =

(x−b1)…(x−bi−1)(x−bi+1)…(x−bn)

(bi−b1)…(bi−bi−1)(bi−bi+1)…(bi−bn)
   (i = 1,2, … , n)  are n pairwise prime polynomials, bi  (i = 1,2, … , n) 

are unequal constants, ai i = (1,2, … , n) are arbitrary constants [4]. 
Solution: According to the existence and uniqueness theorem of interpolating polynomials, just need to 

find polynomial Mi(x) i = 1 … n)  st:Mi(x) ≡ 1(modx − bi) ,Mi(x) ≡ 0(modx − bj(i ≠ j) . Mi(x) =
(x−b1)…(x−bi−1)(x−bi+1)…(x−bn)

(bi−b1)…(bi−bi−1)(bi−bi+1)…(bi−bn)
 (i = 1,2, … , n) fulfils requirements. 

Hence f(x) = ∑ ai(x)Mi(x) = ∑ aj ∏
x−bi

bj−bi

n
i=1

n
j=1

n
i=1 (i ≠ j) is what the Example5 asks for. It is not 

difficult to obtain another proof of the sum of squares formula by using Example5. Suppose the sum be 

the cubic polynomial f(n) of n, where n represents the number of terms, so f(0) = 0, f(1) = 1, f(2) =
1, f(3) = 5 . Use interpolation formula  f(n) = 0 × M1(n) + 0 × M2(n) + 1 × M3(n) + 5 × M4(n) =
(n−0)(n−1)(n−3)

(2−0)(2−0)(2−3)
+ 5 ×

(n−0)(n−1)(n−2)

(3−0)(3−1)(3−2)
=

n(n−1)(2n−1)

6
. Hence ∑ i2n−1

i=1 =
n(n−1)(2n−1)

6
 [4]. 

The next example is the direct application of the Chinese remainder theorem in polynomial form. 

Example 6. f(x) is a polynomial with integer coefficients, for each positive integer m, write Nm = |{x ∈
Z|f(x) ≡ 0(modm). Prove when m1, … , msare mutually prime, Nm1…ms

= Nm1
… Nms

 [7]. 

Solution: Only need to prove when s = 2 .Note m = m1m2 . S = {0 ≤ x < m|f(x) ≡ 0(modm)}  and 
Si = {0 ≤ x < mi|f(x) ≡ 0  (modmi)} i = 1. ,2. 

The following proves that there is a natural one-to-one correspondence between S and S1 × S2.Take 

any x ∈ S , that is 0 ≤ x < m  and m|f(x) .Note x = qimi + xi  where 0 ≤ xi < mi . qi  is integer.mi|x −
xi.Notice that x − xi|f(x) − f(xi), then mi|f(xi), ie. xi ∈ Si.Hence (x1, x2) ∈ (S1 × S2). 

In turn, Take any (y1, y2) ∈ S1 × S2  ie. m1|f(y1) , m2|f(y2) .Use the Chinese remainder theorem, 

there exists a unique integer y. 0 ≤ y < m1m2 = m  and satisfies {
y ≡ y1(modm1)
y ≡ y2(modm2)

 .Since mi|y − yi , 

and y − yi|f(y) − f(yi) .Hence mi|f(y) , m1m2|f(y) , ie. m|f(y) , y ∈ S .This proves Nm1m2
= |S| =

|S1 × S2| = Nm1
Nm2

. 

Lemma 3. Suppose f(x)g(x) + h(x)k(x) = 1, u(x) = ∑ (
m+n−1

j
)n−1

j=0 f(x)m(f(x)g(x))n−1−j(h(x)k(x))j. 

 v(x) = ∑ (
m+n−1

j
)m+n−1

j=n h(x)n(f(x)g(x)m+n−1−j(h(x)k(x))j−n. Then,  u(x)g(x)m + v(x)h(x)n = 1, 

specially, (gm(x), k(x)n) = 1 [16]. 
Proof: Using the Binomial Expansion Theorem:    1 = (f(x)g(x) + h(x)k(x))m+n−1 =

∑ (
m+n−1

j
)m+n−1

j=0 (f(x)g(x))
m+n−1−j

(h(x)k(x))j = ∑ (
m+n−1

j
)n−1

j=0 (f(x)g(x)m+n−1−j(k(x)h(x))j +

∑ (
m+n−1

j
) (f(x)g(x))m+n−1−jm+n−1

j=n (h(x)k(x))j−n = g(x)mu(x) + h(x)nv(x). 

Example 7. Let f(x ) be a polynomial of degree 2n − 1  over the field K, and (x − 1)n|f(x) +
1, (x + 1)n|f(x) − 1. Find f(x) [16]. 
Solution: The original proposition is equivalent to finding the solution of the following congruence 

equations under modulo (x2 − 1)n {
f(x) ≡ −1(mod(x2 − 1)n)

f(x) ≡ 1(mod(x2 + 1)n)
. 

Since (x − 1)n  and (x + 1)n  are mutually prime, according to the theorem of polynomials, the 

congruence equations have a unique solution in the sense of modulo (x2 − 1)n. 

Since (x − 1)n and (x + 1)n are prime, then there exists a polynomial u(x), v(x) ∈ F(x) of degree 
less than n, such that u(x)(x − 1)n + v(x)(x + 1)n = 1. 
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Notice that −
1

2
(x − 1) +

1

2
(x + 1) = 1 , according to lemma3. Suppose u(x) =

(−1)n21−2n ∑ (
2n−1

j
)n−1

j=0 (1 − x)n−j−1(x + 1)j .   v(x) = 21−2n ∑ (
2n−1

j
)2n−1

j=n (1 − x)2n−1−j(x +

1)j−n .Then   u(x)(x − 1)n + v(x)(x + 1)n = 1. Let  f(x) = u(x)(x − 1)n − v(x)(x + 1)n .  Then 

(x − 1)n|f(x) + 1 , (x + 1)n|f(x) − 1  and the degree of f(x)  is 2n − 1 . Hence f(x) =

21−2n ∑ (
2n−1

j
)n−1

j=0 (1 − x)2n−1−j(x + 1)j − 21−2n ∑ (
2n−1

j
)2n−1

j=n (1 − x)2n−1−j(x + 1)j , f(x)  is the 

polynomial that meets the requirement. 

There are other methods for this problem, such as Taylor expansion and integral solution. But the 

theorem in polynomial form is more general and can go deep into the essence of the problem. First, the 

existence and uniqueness of the solution can be clarified by using the Chinese remainder theorem in 

polynomial form, and specific solutions can be given by using the theorem. Other combinatorial 

identities can also be obtained by using similar ideas. 

As mentioned in the introduction, the theorem in polynomial form can be used to construct 

polynomials to prove some propositions about matrix. Next, using the theorem in polynomial form to 

prove the existence of Jordan-Chevalley decomposition. Jordan-Chevalley decomposition is very 

important in the study of Algebraic group, and has many applications in lie algebra. 

Example 8. If A is an n-th order complex matrix, then A can be decomposed intoB + C, where B and C 
are suitable for the following conditions: (i) B is a diagonalizable matrix. (ii) C is a nilpotent matrix.  

(iii)BC = CB. (iv) B, C can be represented as a polynomial of A [3]. 

Proof: Firstly, prove the conclusion on the Jordan standard form J of A. Suppose the different 

eigenvalues of A are λi(i = 1, … , k) and J = diag{J1, … , Jk}. Among them is the block corresponding to 

the root subspace belonging to the eigenvalues, and its order is set to mi. obviously for each i,  Ji = Mi +
Ni  where Mi = λi  is a diagonal matrix, Ni  is nilpotent and MiNi = NiMi .Let M = diag{M1, … , Mk} , 
N = diag{N1, … , Nk}.Then J = M + N, MN = NM, M is a diagonal matrix and N is a nilpotent matrix. 

Since (Ji − λi)
mi = 0, so it fits polynomial (λ − λi)

mi. And λi(i = 1, … , k) are different from each 

other, so the polynomials (λ − λ1)m1, …, (λ − λk)mkare mutually prime. By the theorem there has a 

polynomial f(λ) that satisfies the condition:f(λ) = h(λ)(λ − λi)
mi + λi(i = 1, … , k). 

Substitute Ji into the equation, it is not hard to obtain f(Ji) = hi(Ji)(Ji − λiI)
mi + λiI = λiI = Mi. 

Hence f(J) = diag{f(J1), … , f((Jk)} = diag{M1, … , Mk} = M.Since J − M = J − g(J),  N  is  also  a  
polynomial in J. 

Now consider the general situation. Suppose P−1AP = J, A = P(M + N)P−1. Let B = PMP−1, C =
PNP−1 . Then B is a diagonalizable matrix, and C is a nilpotent matrix, and f(A) = f(PJP−1) =
Pf(J)P−1 = PMP−1 = B. It is not hard to prove BC = CB, C = A − f(A). 

In fact, the Jordan-Chevalley decomposition is also unique, as it is not the focus of this paper and 

omits the proof of existence. 

The following two examples are also the application of the theorem in the form of polynomials to 

matrices. It is not difficult to see that the theorem plays a vital role in the construction. 

Example 9. A, B are 2 block diagonal matrices, and A = diag{A1, A2, … , An}, B = diag{B1, B2, … , Bn}, 
where Ai  and Bi  are matrices of the same order. Let Ai  be suitable for the polynomial gi(x)  i =
(1,2, … , n)and g be mutually prime. Prove that for each i, there exists a polynomial fi(x) such that Bi =
fi(Ai), then there must exist a polynomial f(x) of degree not exceeding n − 1 which satisfies B = f(A) 
[6]. 

Proof: Since gi(x) is mutually prime, it can be seen from the theorem that there is a polynomial h(x) 

that satisfies h(x) = gi(x)qi(x) + fi(x). 
Substituting Ai  into the above formula, it can be gotten h(Ai) = fi(Ai) = Bi .Hence h(A) =

diag{h(A1), … , h(Ak)} = diag{B1, … , Bk} = B .Let the characteristic polynomial of A be g(x) ,do 
division with remainderh(x) = q(x)g(x) + f(x) .Substitute x = A  into the above formula.By Cayley-

Hamilton formula B = h(A) = f(A). 
Example 10. The Adjugate matrix of A can be expressed as a polynomial of A [7]. 
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Proof: (
A11 ⋯ An1

⋮ ⋱ ⋮
A1n ⋯ Ann

)  When r(A) ≤ n − 2  , A∗ = O .When r(A) = n , A∗ = |A|A−1  where A−1  is a 

polynomial of A. Therefore, it is only necessary to prove that the conclusion holds when r(A) = n − 1. 
When r(A) = n − 1 , 0 is the eigenvalue of A, at this time there is an invertible matrix P, such that 

P−1AP = diag{J, B}. Where J = (
0 1 ⋯ 0
⋮ ⋱ 1
0 ⋯ 0

), 1 ≤ r ≤ n. B is reversible, and thus the adjoint matrix 

of is obtained:(P−1AP)∗ = diag{J, B}∗ = D = diag{(−1)1+r|B|Jr−1, O}. 

According to the theorem, there has a polynomial f(λ) that {
f(λ) ≡ (−1)1+r|B|λr−1(modλr)

f(λ) ≡ 0(mod|λI − B|)
. 

Hence (P−1AP)∗ = diag{J, B}∗ = D = diag{(−1)1+r|B|Jr−1, O} = diag{f(J), f(B)} = f(diag{J, B}) 

= f(P−1AP) . Hence,  P∗A∗(P−1)∗ = P∗A∗(P∗)−1 = P−1f(A)P . A∗ = (P∗)−1P−1f(A)PP∗ =
(PP∗)−1f(A)(PP∗) = f(A). The adjugate matrix of A can be expressed as a polynomial of A. 

Example 11. Congruence equations are clearer from the view of Chinese remainder theorem in group 

theory. For instance, considering the congruence equation mentioned before {

x ≡ 2(mod3)
x ≡ 3(mod5)
x ≡ 2(mod7)

 ,this 

problem corresponds to the decomposition Z 105Z⁄ = 70Z̅̅ ̅̅ ̅⨁21Z̅̅ ̅̅ ̅⨁15Z̅̅ ̅̅ ̅ ≅ Z 3Z⁄ ⨁ Z 5Z⁄ ⨁ Z 7Z⁄ ,23̅̅̅̅  

= 2 × 70̅̅̅̅ + 3 × 21̅̅̅̅ + 2 × 15̅̅̅̅ ⟼ (2̅, 3̅, 2̅) = (23̅̅̅̅ , 23̅̅̅̅ , 23̅̅̅̅ ) [10]. 
As mentioned in the introduction, the theorem in the form of group theory can be used to classify 

groups. But this classification is not thorough. So, it will not be described in detail here. For details, 

please refer to [10]. 

In the field of public key Cryptography and other fields, it is often necessary to find the square root 

of an element a in the modular m residue class ring Zm, where m = pq. p, q is a different prime odd 

number. This can be found by using the Chinese remainder theorem in ring theory. 

Example 12. In Z91, find the square root of 1̅ [9]. 
Solution: Z91 = Z (91)⁄ .Since 91 = 7 × 13 and 7 and 13 are prime.(91) = (7)(13) = (7) ∩ (13). 

Hence Z (91)⁄ ≅ Z (7)⁄ ⨁ Z (13)⁄ . Where the isomorphic mapping isφ: a + (91) ⟼ (a + (7), a +

(13)) . Hence (a + (91))2 = 1 + (91) ⟺ (a + (7). a + (13))
2

= (1 + (7), 1 + (13)) ⟺ (a +

(7))
2

= 1 + (7) and (a + 13)2 = 1 + (13). 

Since Z (7)⁄ , Z (13)⁄  are fields, and in the unary polynomial ring F[x] on any field F, the n-degree 
polynomial f(x) has at most n roots on F, so x2 − 1 has at least 2 roots in Z (7)⁄  and Z (13)⁄ .     Obviously, 

1 + (7), −1 + (7) are two different square roots of 1 + (7); 1 + (13) and −1 + (13) are two different 
square roots of 1 + (13). Hence (a + 91)2 = 1 + (91) ⟺ a + (7) = ∓1 + (7)and a + (13) = ∓1 +

(13) ⟺ {
a ≡ 1(mod7)

a ≡ 1(mod13)
. Or  {

a ≡ 1(mod7)
a ≡ −1(mod13)

, Or {
a ≡ −1(mod7)
a ≡ 1(mod13)

, Or {
a ≡ 1(mod7)

a ≡ −1(mod13)
. 

First solve the following two congruence equations:{
x ≡ 1(mod7)

x ≡ 0(mod13)
⟹ x = e1 = 78 + 91k, k ∈ Z; 

{
x ≡ 0(mod7)

x ≡ 1(mod13)
⟹ x = e2 = 14 + 91k, k ∈ Z.According to the theorem, it can be concluded that 

the solution of {
a ≡ 1(mod7)

a ≡ 1(mod13)
 is a = 1 × 78 + 1 × 14 + 91k = 1 + 91l, l ∈ Z. 

Similarly, it can be concluded that the solutions of the remaining three congruence equations are:  a =
1 × 78 + (−1) × 14 + 91k = 64 + 91k, k ∈ Z ; a = (−1) × 78 + 1 × 14 + 91k = 27 + 91l, l ∈
Z ; a = (−1) × 78 + (−1) × 14 + 91k = −1 + 91l, l ∈ Z .Hence in Z91 , the square roots of 1̅  are 
1̅, 64̅̅̅̅ , 27̅̅̅̅ , −1̅̅ ̅̅ . 
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4.  Conclusion 

From the full text, it can be known that the Chinese remainder theorem has various forms, including 

number theory, polynomial theory, group theory and ring theory. Its different forms solve many problems 

in different fields, including proving mathematical propositions, engineering applications, and computer 

applications. It can be seen from this that the theorem is important in algebra because the content of this 

paper is in the abstract scope, and the theorem in other forms is not discussed. With the continuous 

development of the current algebraic system, it is natural to extend the theorem to more algebraic 

systems. 
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