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Abstract. This study examines the dark matter density in the Galaxy by fitting recent data on stellar
rotational velocities. We employ a model including the disk, the bulge, and the dark matter halo. The disk’s
density is parameterized using a modified Bessel function, and the bulge is modeled using both the De
Vaucouleurs and Exponential Sphere functions to better fit large and small radii respectively. The dark halo
is modeled using the generalized Navarro-Frenk-White profile, with slope parameters for standard NFW
and Moore profiles, and an Isothermal profile for comparison. The fit of the model parameters is established
using local Dark Matter density and total Dark Matter mass as boundary conditions, with circular velocities
derived via a Newtonian approach. The least chi-square (χ2) method is used for rotation curve fitting.
Results demonstrate successful fitting of rotational velocity data and significant influence of the DH at
large radial distances from the Galactic center.
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1. Introduction
Dark matter (DM), a mysterious substance continues to intrigue the field of astrophysics. Its elusive
nature, undetectable through light interaction, leaves us reliant on its gravitational effects on galaxies
for indirect observation and understanding. Approximately 95% of the mass in galaxies and clusters is
attributed to an unidentified component, commonly referred to as DM. This assertion is supported by
observations from rotation curves (extending to hundreds of kpc), gravitational lensing (up to 200 kpc),
and the presence of hot gas in these clusters. (see, e.g., for a review [1]).

DM evidences demonstrate that these elusive particles are weakly interacting, non baryonic, stable
on cosmological scales and massive. Weakly Interactive Massive particles (WIMPs) are one of the best
theoretically motivated models of particle DM [2]. There are different strategies to try to detect DM
particle interactions involving cosmic-ray data, collider and direct detection experiments. Despite the
huge experimental effort no evidence of DM detection has been proved so far [3–5].

One of the key quantities to study the properties of DM is its density in the Universe and in particular
in the Milky Way. Different methods are used to derive the DM density. One of the most powerful
is associated with the data of the rotational velocities of stars in the Galaxy. This method, based on
the principle that the gravitational effect of DM can influence the speed at which stars move within the
Galaxy, has been pivotal in shaping our current understanding of the spatial distribution and abundance
of DM (see, e.g., [6]).
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Due to our position within the Milky Way, achieving precise measurements of the Galaxy’s rotation
curve has consistently proven to be a considerable challenge [7, 8]. The intricate challenges we face in
determining the Milky Way’s rotation curve have been, in part, a result of the complexities introduced
by the dense and obscuring interstellar gas and dust within the Galaxy’s disk. Yet, the principal obstacle
thus far has been the absence of accurately measured 3D velocities and distances of the stars within the
Milky Way. This limitation has been recently surmounted thanks to the second data release (DR2) of the
ESA/Gaia mission [9, 10].

In a non-MOND (MOdified Newtonian Dynamics) context, the Milky Way’s rotation curve (RC)
was discerned through observations of various galactic entities. Under the assumption that Newtonian
dynamics uniformly governs the interpretation of observational data, the presence of the dark halo (DH)
has been corroborated through RC analyses. This article provides a review of current RC observational
studies and local DM density profiles within the Newtonian dynamics paradigm [11]. We also provide a
new estimate of the possible DH contribution to the dynamic of the Milky Way.

In this paper, we introduce an innovative method to fit models to the velocity distributions observed
in various Galactic structures, including the DH, bulge, and disk. Particularly concerning the DH, we
calculated the associated parameters for different profiles and compared them to the results presented
by Cirelli et al. [12]. Our objective is to unearth yet unexplored aspects of DM by investigating the
gravitational influences exerted by these various Galactic components.

Overall, this study serves as a significant step forward in understanding DM velocity distributions,
contributing to the broader landscape of astrophysics.

2. Modeling the Rotation Curve
In this section, we explore three models essential for delineating the Galaxy’s rotation curve: the
Exponential Disk, The Bulge, and DH. For the Exponential Disk, we utilize modified Bessel functions
to model the rotational velocity’s decline with radial distance from the GC. In the De Vaucouleurs
Bulge model, we employ De Vaucouleurs law, with an exponential decay model to capture the centrally
concentrated galactic mass distribution and its impact on the inner rotation curve, Moreover we adopt
Exponential Sphere profile to better fit the velocity observed with in 1kpc. For the DH, a critical
component despite its invisibility, we adopt both the NFW, gNFW and Isothermal profiles to represent
its gravitational influences on the outer sections of the rotation curve. Each model contributes uniquely
to our comprehension of the rotation curve, thus enhancing our understanding of the Galaxy’s mass
distribution and structure.

2.1. Exponential Disk
The Galactic disk is commonly modeled using an exponential disk approach. The RC for such an
exponential disk is given by [13]

Vd(R) =
√

4πGΣ0Rdy2[I0(y)K0(y)− I1(y)K1(y)], (1)

where y = R/(2Rd) and Ii and Ki represent modified Bessel functions[11].

2.2. The Bulge
De Vaucouleurs law, a widely utilized Surface Mass Density (SMD) profile, is typically employed to
represent the central bulge. This is based on the assumption that it is proportional to the observed optical
profile the surface brightness [14].

Σb(R) = Σbe exp

[
−7.6695

((
R

Rb

)1/4

− 1

)]
, (2)

where Σbe corresponds to the value at radius Rb that encompasses half of the total integrated surface
mass [15]. It’s noteworthy that both the De Vaucouleurs profile and the exponential disk sustain a fixed
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value at the GC. The volumetric mass density, represented as ρ(r), at a distinct radius r for a spherically
shaped bulge, can be calculated using the Surface Mass Density (SMD). [11].

ρ(r) =
1

π

∫ ∞

r

dΣb(x)

dx

1√
x2 − r2

dx (3)

and the mass within the radius R is:

M(R) = 4π

∫ R

0
r2ρ(r)dr (4)

The circular velocity then, is thus calculated as:

Vb(R) =

√
GM(R)

R
(5)

In addition to using the De Vaucouleurs bulge model, we have adopted an alternative exponential
sphere bulge model to more accurately fit the observed velocities within a 1 kpc radius. In this framework,
the volumetric mass density ρ is expressed as an exponential function in terms of radius r using a
characteristic scale radius rb [15]:

ρ(r) = ρb exp

(
− r

Rb

)
(6)

In this context, ρb represents the bulge density at the GC with the unit of GeV · cm−3. To obtain the mass
and then the velocity of the bulge, we adopt the same methodology delineated in Equation (2.4) and (2.5)
respectively.

2.3. Dark Matter Halo
A persistent challenge in astrophysics and cosmology has been discerning the distribution of DM
surrounding the Milky Way. When examining the distribution of DM in the Milky Way, we investigate
various potential scenarios. The NFW profile, which exhibits a peak as r−1 at the GC, has been a
conventional choice, primarily due to its grounding in N-body simulations [12].

Given that alterations in the DH can influence the estimation of DM density derived from the Milky
Way’s rotation curve, we employ an alternative parameterization for the DM component. This enables
us to account for varying configurations, especially those deviating near the center. Notably, one of the
profiles we utilize features a central cusp. We characterize one of our DH profiles as an extended version
of the NFW profile, which we denote as gNFW. [16],

ρgNFW(r) = ρs

(rs
r

)γ (
1 +

r

rs

)γ−3

, (7)

where ρ0 is the normalization constant, rs is the scale radius, and γ represents the inner slope. When
γ = 1, the profile reverts to the widely recognized NFW profile. [17]. The profile is commonly adopted
as an approximation for DM densities discerned in cosmological simulations. It depicts a cuspy profile
where the density increases significantly towards smaller radial distances.

ρNFW(r) = ρs
rs
r

(
1 +

r

rs

)
. (8)

In addition to the gNFW models, several emerging models have demonstrated competitive
performance.Among the various profiles, recent numerical simulations have identified the Einasto profile
as offering a superior fit [18, 19]. Both the Isothermal [20, 21] and Burkert profiles [22] have exhibited
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good alignment with observational data. Additionally, the Moore model has also produced satisfactory
fits based on gNFW model [23]. All considered profiles presuppose spherical symmetry, with r being
the coordinate centered at the GC [12].

Einasto : ρEin(r) = ρs exp

{
− 2

α

[(
r

rs

)α

− 1

]}
, (9)

Isothermal : ρIso(r) =
ρs

1 + (r/rs)2
, (10)

Burkert : ρBur(r) =
ρs

(1 + r/rs)(1 + (r/rs)2)
, (11)

Moore : ρMoo(r) = ρs

(rs
r

)1.16(
1 +

r

rs

)−1.84

. (12)

In order to determine the scale parameters rs and ρs, we utilize observational data from the local Milky
Way. Specifically, we use the local DM density at the solar radius r⊙ = 8.33 kpc [24], which is given as
ρ⊙ = 0.3 GeV/cm3. This is a canonical value consistently used in the literature (see, for instance, [25]).
The total DM mass contained in 60 kpc is M60 = 4.7× 1011M⊙, This number is based on the kinematic
surveys of stars in SDSS [26].

α rs ρs

NFW - 24.6 0.182

Einasto 0.17 28.7 0.032

EinastoB 0.11 35.7 0.020

Isothermal - 4.42 1.363

Burkert - 12.7 0.710

Moore - 30.5 0.104

Figure 1: DM profiles, along with the associated parameters to be input into the functional forms
delineated in equation 2.9. through 2.12

The normalized density, ρs, and the scale radius, rs, are initially unknown for each profile. In order
to find them we first use the condition of the local DM density: ρ(r = r⊙) = ρ⊙ = 0.3 GeV/cm3. This
condition permits to find ρs as a function of rs. This implies that the density profile of DM now depends
only on rs. In order to find rs we now use the second condition about the total DM mass. To obtain
the mass of the DH, we adopt the same methodology delineated in Equation (2.4). This is a non-linear
equation that we use using a solver implemented in Python. Upon numerically determining the values of
rs and ρs, the density profile becomes solely a function of the distance, r, from the GC.

We show in Fig. 1 the shape of the density profile we find for the different functions and the values of
the parameters ρs and rs. These values are quite similar with respect to the ones reported in Ref [12].

In the following we will use the values of the DH density parameters that we find with the previous
analysis (see, Fig. 1). We will fix the scale radius while we will leave a re-normalization factor ’κ’ which
can be explained as a change of the local DH density. Hence, the rotational velocity is redefined as
follows:

Vh(R) =

√
κGM(R)

R
. (13)
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3. Fitting the Rotation Curve
In our investigation, we opt for the NFW model (γ = 1) and the gNFW model for our DH representation.
This choice stems from the frequent depiction of rotation velocity as a combined effect of the central
black hole (BH), bulge, disk, and the DH:

V (R) =
√

VBH(R)2 + Vd(R)2 + Vb(R)2 + Vh(R)2, (14)

where the notations BH, b, d, and h correspond to black hole, bulge, disk, and DH respectively. When
our focus is predominantly on the DH, the influence from the black hole can be largely ignored given its
negligible contribution in this context [11].

We employ the least χ2 fitting method to fit the component of the disk, the Bulge and the DH. It
enables us to quantify the discrepancy between our modeled velocity distributions and the observed data,
thus validating the efficacy of our methods.

χ2 =
N∑
i=1

(
V (R)i − Vobs,i

σi

)2

, (15)

where V (R) strand for the model of the rotation curve where the observed velocity Vobs and the standard
deviation σi are respect to the radius are observational data [11]. Leveraging the model presented
in the previous section, and utilizing the rs and ρs values discerned from Figure 1, we are able to
derive the parameters of each component. We start by assuming for the DH a NFW profile. Table 1
enumerates these parameters, as established from the previous section, assuming slope parameter γ = 1.
Consequently, we can ascertain the change in modeled velocity purely as a function of radius.

The chi-square (χ2) statistics for the NFW model, with γ = 1, yield values of 96.52 and 93.03 for
the De Vaucouleurs bulge and the exponential bulge respectively. These values provide a comparative
measure of how well each model aligns with the observed data.

Additionally, we implemented the Moore model, which can be considered a gNFW model at
γ = 1.16. The corresponding scale parameters and fitting plots for the two models with different slope
parameters are presented in Table 1, Figure 2 and Figure 3, respectively. When evaluating the Moore
model with γ = 1.16, we obtained chi-square (χ2) statistics of 96.52 and 75.24 for the De Vaucouleurs
bulge and the exponential bulge.

Table 1: Values with error for the scale Parameters of De Vaucouleurs Bulge and Exponential Bulge and
the Exponential disk, the slope parameters are γ = 1 and γ = 1.16 respectively.

γ = 1 γ = 1.16

Parameter De Vaucouleurs Exponential De Vaucouleurs Exponential

Rd [kpc] 12.4± 0.8 7.7± 0.3 12.7± 0.8 7.8± 0.3

Σd 8.8+0.4
−0.4 × 1017 10.1+0.4

−0.3 × 1017 5.5+0.3
−0.3 × 1017 8.8+0.4

−0.4 × 1017

Rb [kpc] 0.739± 0.044 0.139± 0.003 0.673± 0.042 0.136± 0.003

Σbe −1.3+0.1
−0.1 × 1038 - −1.4+0.1

−0.1 × 1038 -

ρb[Gev/cm3] - 5.7+0.3
−0.3 × 10−4 - 3.0+0.3

−0.3 × 10−4

κ 1.01+0.05
−0.05 1.17+0.04

−0.04 0.90+0.04
−0.04 1.04+0.04

−0.03
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(a) NFW(γ = 1)-Exponential Sphere Bulge log-
scale

(b) NFW(γ = 1)-Exponential Sphere Bulge linear-
scale

(c) NFW(γ = 1)-De Vaucouleurs Bulge log-scale
(d) NFW(γ = 1)-De Vaucouleurs Bulge linear-
scale

Figure 2: These figures contain the results for the DH, bulge and disk density components obtained by
fitting the rotation velocity data. In each figure we show the gNFW DH profile (blue dotted), disk (green
dashed) and bulge (red dot-dashed) components as well as the total (black solid). Together with the
model results we show the data taken from Sofue’s work[15].

As illustrated in Figure 2, the De Vaucouleurs Bulge model provides a more accurate fit for data
points at larger radii (r > 50kpc), implying a better representation of the DH. However, this model
overestimates the velocity within a radius of 1kpc. On the other hand, the Exponential Bulge model
successfully captures the rotation curve closer to the GC, but it seems to require a larger slope parameter
of the gNFW profile to optimally fit the rotation curve at larger radii.

Overall, the rotation curve associated with the exponential bulge profile is more sensitive to the
variation of the slope parameter, γ. Allowing γ to freely vary results in an optimal fit for the exponential
bulge that yields a surprisingly low χ2 value of 30.52, corresponding to γ = 1.61. This result, however,
is not acceptable due to the exceedingly large value of γ. In fact, numerical simulations point towards
values of γ between 1.0-1.4.

Moreover, we have also incorporated the Isothermal model in our analysis as a point of comparison
to the gNFW profile. As a result of this comparison, we obtained chi-square values of 131.13 and 101.05
for the exponential bulge and De Vaucouleurs bulge, respectively. The scale parameters and fitting plots
are shown in Table(2) and Figure (4).
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(a) gNFW(γ = 1.16)-Exponential Sphere Bulge
log-scale

(b) gNFW(γ = 1.16)-Exponential Sphere Bulge
linear-scale

(c) gNFW(γ = 1.16)-De Vaucouleurs Bulge log-
scale

(d) gNFW(γ = 1.16)-De Vaucouleurs Bulge linear-
scale

Figure 3: These figures contain the results for the DH, bulge and disk density components obtained by
fitting the rotation velocity data. In each figure we show the Isothermal DH profile (blue dotted), disk
(green dashed) and bulge (red dot-dashed) components as well as the total (black solid). Together with
the model results we also show the data taken from Sofue’s work [15].

Table 2: Values with error for the scale Parameters of De Vaucouleurs Bulge and Exponential Bulge of
the Isothermal DH model

Parameter De Vaucouleurs Exponential Sphere

Rd [kpc] 12.3± 0.8 7.1± 0.3

Σ0 6.4+0.3
−0.3 × 1017 10.2+0.4

−0.4 × 1017

Rb [kpc] 0.889± 0.051 0.143± 0.003

Σbe 1.06+0.07 × 1038 -

ρb[Gev/cm3] - 5.46+0.02
−0.02 × 10−4

κ 1.00+0.05
−0.05 1.18+0.04

−0.04
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(a) Isothermal-Exponential Sphere Bulge log-scale
(b) Isothermal-Exponential Sphere Bulge linear-
scale

(c) Isothermal-De Vaucouleurs Bulge log-scale (d) Isothermal-De Vaucouleurs Bulge linear-scale

Figure 4: These figures contain the results for the DM, bulge and disk density components obtained by
fitting the rotation velocity data. Here we use the Isothermal profile for the DM density. In each figure
we show the DM (blue dotted), disk (green dashed) and bulge (red dot-dashed) components as well as
the total (black solid). Together with the model results we also show the data taken from Sofue’s work
[15].

The fit achieved with the Isothermal profile doesn’t align as well as the one obtained using the gNFW
profile. Generally, the χ2 value for the Isothermal model is larger compared to that of the gNFW model,
indicating a poorer fit. Furthermore, the Isothermal profile exhibits an increasing trend at larger radii,
which contradicts the decreasing trend observable in the data.

4. Conclusions
In this paper we have investigated the density of dark matter in the Milky Way by fitting the latest data
for the rotational velocities of stars. In order to do this we consider three components: the disk the bulge
and the DH. For the disk we parameterize the density with a modified Bessel which is related to the
exponential disk model. The disk component has two parameters: Σd which governs normalization and
Rd which moves the peak velocity at certain radius from the GC. For the bulge component we adopted
a De Vaucouleurs function which is related to the SMD profile that is assumed to be proportional to
the empirical optical profile of the surface brightness. This model allows us to better fit the velocity for
large radii. Meanwhile, we also employed the Exponential Sphere bulge model to better fit observed
velocity close to the GC. Finally, For the DH model, we employed the generalized gNFW profile with
two different slope parameters: γ = 1 (corresponding to the standard NFW model) and γ = 1.16
(corresponding to the Moore model). Simultaneously, we adopted the contrasting Isothermal profile for
comparison.
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We established our models using the measured local Dark Matter density at the solar radius and
the total Dark Matter mass contained within a 60 kpc radius as a boundary condition to determine
the parameters rs and ρs for the respective profiles. We employed the classic Newtonian approach to
ascertain the circular velocity. Meanwhile, we use the least chi-squire (χ2) method to fit the rotation
curve.

Our analysis demonstrate that the disk, bulge and DH components can fit very well the rotational
velocity data from radii of 0.1 to 100 kpc from the GC. In particular, the bulge contributes in the inner
part of the Galaxy up to radii of a few kpc. The disk dominates the dynamic from a few kpc up to
a 20 kpc. At large distances from the GC the DH drives the star velocities. This is a result which is
independent from the density profile used. In particular, at distances from the GC above 50 kpc the DH
makes at most the 80% of the rotational velocity.
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