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Abstract. This paper provides a corresponding coping strategy for developing the insurance 

industry under extreme weather by establishing an insurance company underwriting model. An 

insurance model (ICU model) for assessing catastrophe risk is proposed based on the results of 

some international databases and disaster resilience studies. The ICP coefficient is obtained by 

multiplying the regional vulnerability index with the regional risk index, where our innovatively 

proposed ARIMA-LSTM coupling algorithm predicts the risk index. The inverse proportionality 

function of the ICU coefficient is constructed based on the fact that the risk of insurance 

companies is positively correlated with the regional risk (ICP coefficient) and negatively 

correlated with the regional purchasing power (CBP coefficient). The CBP coefficients were 

computed by K-means clustering, and the derived ICP coefficients were used to derive the ICU 

coefficients for each region. Finally, the coefficients were categorized into three intervals to give 

the insurance company’s coverage model. 

Keywords: ARIMA-LSTM coupling algorithm, K-means clustering, Insurance Company 

Underwriting Model, Economic vulnerability, Social vulnerability. 

1.  Introduction 

1.1.  Problem Background 

Since the 1990s, a series of natural disasters have caused economic losses in the tens of billions of U.S. 

dollars. Examples include the Northridge earthquake in 1994, the Kobe (Japan) earthquake in 1995, and 

the 2004 Indian Ocean earthquake that caused the Asian tsunami.[1] In recent years, along with the 

acceleration of urbanization and industrialization, the problem of environmental pollution has become 

increasingly serious. The enormous impact of natural and man-made disasters on human society has 

made them one of the topics of great concern. 

Although insurance is thought to play a critical role in improving resilience to these events by both 

promoting recovery and providing incentives for investments in hazard mitigation [3], the situation and 

development of the insurance industry, which is related to mega-disasters, is still not favorable. On the 

one hand, the increase in the number of natural disasters has led to a sharp rise in the amount of 

compensation paid by insurance companies; on the other hand, the crisis in the development of the 

insurance industry has been aggravated by high premiums, and the purchasing power of the public has 
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continued to decline. Therefore, it is particularly significant to establish relevant models to promote its 

development.  

2.  Assumptions and Justifications 

Assumptions 1: Among the significant natural hazards that are increasingly common, extreme 

weather events are a relevant variable that can be used to evaluate the trend of natural hazard threats in 

most regions. 

Justifications1: We arrived at the above conclusion after conducting a study using Pearson’s 

correlation coefficient. Global data on various types of disasters from 1970 to 2023 has been extracted. 

After analyzing the correlation coefficients, we found that the correlation coefficient between extreme 

weather and total threat is greater than 0.8, indicating a very strong correlation. Therefore, we ultimately 

selected the frequency data of extreme weather to represent the trends of mega-hazards in each region. 

Assumptions 2: There is a positive correlation between the severity of a natural disaster and its 

frequency of occurrence. In other words, the higher the frequency of occurrence, the greater the severity 

of the hazard. 

Justifications 2: The above assumptions are derived when the impacts caused by each mega-hazard 

are close to the average and the error is negligible. 

3.  Notations and Glossary 

3.1.  Notations 

The key mathematical notations used in this paper are listed in Table 1. 

Table 1. Notations used in this paper 

Symbol Description 

ICU Insurance Company Underwriting 

ICP Insurance Claims Power 

CBP Customer Buying Power 

C0 The constant term of the formula ICU 

Gi Economic fragility 

mi Population density 

Ri Social vulnerability 

Yi Comprehensive fragility 

Lr Long-term-risk 

3.2.  Glossary 

Insurance Protection Gap: the difference in protection coverage between economic losses brought 

about by natural disasters and the amount of those losses that are covered. 

Underwrite: accept liability for, thereby guaranteeing payment in the case of loss or damage. 

4.  Insurance Company Underwriting Model 

4.1.  Data Description 

Our team utilized data on the frequency of natural disasters, global GDP[4], and national GDP[5] from 

the World Bank and an online data-sharing program[6] established by Oxford University economist Max 

Roser in 2011. Global GDP and national GDP can be used by researchers to study the future development 

of a region and the adequacy of its infrastructure. The frequency of disasters can be used to validate the 

accuracy of subsequent models. Data sources are in the table below: 
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Table 2. Data source collation 

Dataset Website Source 

Number of natural 

disaster events 
https://ourworldindata.org/search?q=Extreme-weather 

Global GDP data 
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD? 

end=2022&start=2022&ty pe=shaded&view=map&year=1973 

GDP of each country https://www.kylc.com/stats/global/yearly_overview/g_gdp_per_capita.html 

4.2.  The Establishment of Model Ⅰ 

After gaining a thorough understanding of the profitability model of catastrophe insurance for insurance 

companies, the ICU model is divided into two components: Insurance Claims Power (ICP) and 

Customer Buying Power (CBP).  

The ICU coefficient directly correlates with the underwriting risk of the insurance company in the 

region. A larger ICU coefficient suggests a greater underwriting risk, prompting the recommendation 

that the insurance company refrain from underwriting buildings in the region. Alternatively, the 

company could consider raising premiums or setting an upper limit on payouts to mitigate the risk. 

Conversely, a smaller ICU coefficient indicates a lower underwriting risk, allowing for potential 

adjustments to the insurance company’s policies to further incentivize people to purchase insurance in 

the region. 

Based on this assumption, we provide the formula for calculating the ICU coefficient as follows: 

𝐼𝐶𝑈 = 𝐶0 × 𝐼𝐶𝑃/𝐶𝐵𝑃 (1) 

where ICU represents the underwriting factor, ICP denotes the underwriting power factor, CBP signifies 

the customer purchasing power factor, and C0 is a constant. We set the value of C0 to 1 to simplify the 

calculation in the following sections. 

Our team grouped and categorized the factors of ICP and CBP. Among them, ICP is categorized into 

fragility factors and long-term extreme weather forecasting. The CBP coefficients are categorized into 

risk perception (R), education level (E), and GDP per capita coefficient (G).  

4.3.  Insurance Claims Power Model 

Vulnerability is divided into two parts: Economic vulnerability and Social vulnerability.[7] 

Economic vulnerability: The property damage caused by natural disasters is relatively higher in 

economically developed and property-rich areas. By the same token, the property losses caused by 

economically underdeveloped regions are relatively small. Therefore, it is necessary to select the per 

capita GDP of each judging area as the indicator for judging economic vulnerability. 

The formula for calculating the region’s vulnerability with the economic vulnerability indicator is as 

follows: 

𝐺𝑖 = {
ln(𝐺) −

21

2
                5 × 104 ≤ 𝐺 ≤ 105

1                                   𝐺 ≥ 105

0.3                               𝐺 < 5 × 104

(2) 

where Gi is the region’s economic vulnerability indicator and G represents the region’s GDP per capita 

(measured in dollars). 

Social vulnerability: The more densely populated an area is, the greater the loss of life caused by 

natural disasters. Therefore, population density was chosen as the indicator to judge social vulnerability. 

{

𝑚𝑖 = 𝑟𝑖/𝑠𝑖

𝑅𝑖 = {

𝑚𝑖

1300
              𝑚𝑖 < 1300

1                      𝑚𝑖 ≥ 1300

(3) 

Proceedings of the 2nd International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/38/20240522

3



where ri is the actual total number of people in the area, si is the actual area of the area, mi is the 

population density of the area, and Ri is the social vulnerability indicator for the area. 

On one hand, the level of disaster vulnerability increases with the economic development and 

population density of an area. On the other hand, economically developed areas have a greater capacity 

to withstand disasters, which partially offsets the increase in disaster losses. Therefore, the relationship 

between vulnerability and property and population is non-linear, with rapid growth at the initial stage 

followed by a gradual slowdown. Based on the above assessment, we developed a functional relationship 

between the giant disaster vulnerability index and the economic and social vulnerability indices: 

𝑌𝑖 = √
𝑅𝑖 + 𝐺𝑖

2
(4) 

where Gi represents economic vulnerability, Ri represents social vulnerability, and Yi represents 

vulnerability to mega-disasters in the area. 

Catastrophe risk prediction is a crucial component of ICP coefficient assessment. After collecting 

disaster and CO2 emission data from various regions in previous years, we utilized the ARIMA-LSTM 

prediction model. Following the pre-processing of the data using the differential equation structure of 

the ARIMA model, we observed that the disaster data exhibit multivariate effects, unstable time series, 

and straightforward seasonality. Finally, we have decided to leverage the complementary advantages 

and targeted combination of these two algorithms to address the potential time series shift phenomenon 

in ARIMA time series, prediction (Autoregressive Integrated Moving Average Model), and the 

stochastic nature of the fitting effect of LSTM: 

{
𝑤1 + 𝑤2 = 1

𝑌(𝑡) = 𝑤1𝑦1(𝑡)+𝑤2𝑦2(𝑡)
(5) 

where y1(t) represents the time series prediction generated by the ARIMA algorithm, and y2(t) represents 

the time series prediction produced by the LSTM neural network. w1 and w2 represent the weights of 

the two algorithms. 

The ARIMA model demonstrates excellent performance in handling non-smooth time series, such 

as the unit root process of order d. It can be applied to the data in various ways. Therefore, we need to 

first differentiate the data and convert it into a smooth time series before modeling. 

Our team selected the neural network based on the Adam optimization algorithm for timing 

prediction in LSTM neural networks.  

Based on the above structure, the input layer of the LSTM model is involved, and it considers the 

frequency of extreme weather, CO2 emissions, temperature, and economic losses as analyzed in section 

4.1. Multiple LSTM hidden layers are added, with each layer learning different time-step patterns within 

the sequence.  

RMSE (Root Mean Square Error) has been selected as the loss function. The formula for the loss 

function is as follows: 

√1
𝑛⁄ ∙ (𝑍𝑖 − 𝑈𝑖)2 (6) 

where n represents the number of samples, Zi denotes the predicted value, and Ui represents the true 

value. 

During the optimizer configuration phase, the research team selects the Adam optimizer. The 

traditional gradient algorithm has the drawbacks of maintaining a constant learning rate, oscillating at 

the saddle point, and easily getting trapped in a local optimal point. In contrast, the Adam algorithm, 

which incorporates an adaptive gradient descent strategy, can dynamically adjust the learning rate for 

each parameter based on the estimation of the first-order and second-order moments of the gradient. It 

avoids using fixed or manually adjusted learning rates, which improves optimization efficiency and 

stability. At the same time, Adam’s algorithm incorporates momentum by utilizing the estimation of the 
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first-order moments of the gradient to introduce an inertia term for the updated direction of each 

parameter. This results in a smoother and more stable update direction. This helps to avoid oscillation 

or deviation from the optimal solution caused by the gradient descent algorithm when there is noise or 

curvature inconsistency. 

The update rule for the Adam optimizer is shown in the following equation: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (7) 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼 ∙ 𝑚𝑡

√𝑣𝑡 + 𝜀
 

We acquired the ARIMA-LSTM mega-disaster prediction data, computed the average frequency of 

disasters in the region for the next five years, and derived the Long-term coefficient (Lr coefficient) 

through standard normalization of the data for the selected multiple regions. The Lr coefficient was 

multiplied by the Yi vulnerability index calculated in 4.3.1 to obtain the final ICP coefficient. 

𝐼𝐶𝑃 = 𝑌𝑖 ∙ 𝐿𝑟 (8) 

The constraints of any one of the three influencing factors— GDP per capita, level of education, and 

customer’s judgment of risk—may cause customers to refuse to purchase insurance. 

After a thorough analysis by the research team, several factors that influence whether a customer 

purchases insurance have been identified: 

➢ GDP per capita level: Even if the region experiences frequent extreme weather events, lower 

income levels are linked to reduced purchasing power for insurance. 

➢ Level of education: Individuals with higher levels of education are more likely to be aware of 

insurance and to make insurance purchases. 

➢ Pr factor (presently risk factor): The higher the risk factor of the region, the more likely it is to 

purchase catastrophe insurance. 

To simplify the calculation of the coefficient of purchasing power (CBP), we categorized purchasing 

power into three groups, assigning values of 1, 2, and 3 to the CBP. After conducting a preliminary 

analysis of the data, no significant outliers were identified. Therefore, it is reasonable to establish a 

hierarchical system based on K-means clustering. 

4.4.  The Result of the Model 

The Pearson correlation coefficient between extreme weather and disasters was experimentally analyzed 

to be as high as 0.8. This indicates that the frequency of extreme weather can serve as a proxy for the 

severity of mega-disasters: 
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Figure 1. Heat map of correlation coefficients for different categories of extreme 

Therefore, in this paper, we have chosen to use the frequency of extreme weather events as a proxy 

for the threat of mega-disasters.    

ICU is directly proportional to the ICP coefficient and inversely proportional to the CBP coefficient, 

as illustrated in the figure below: 

 

Figure 2. ICU-ICP relationship curve  Figure 3. ICU-ICP relationship curve 

Using the global disaster frequency as the sample set for algorithm validation, we tested the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) of the data. After analyzing 

the results, we determined the differential order of the ARIMA model to be “d” and selected the ARIMA 

(0, 1, 1) prediction model. 

By substituting into the ARIMA model, we obtain the relationship between yt and yt-1 as follows: 

when p=0, d=1, and q=1: 
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Finally, the ARIMA predicted time series was obtained, followed by the LSTM neural network 

prediction as shown below: 

 

Figure 4. Prediction plots for ARIMA and LSTM 

ARIMA predicts more fluctuations, while LSTM predicts a smoother sequence. Based on this, we 

finally provide the following weight assignment formula: 

  

After obtaining the two columns of predicted timings, the allocation is reorganized based on the 

weights, ultimately resulting in the predicted timings of the coupled algorithm: 

 

Figure 5. Coupled ARIMA-LSTM algorithm for time prediction  
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Through the above comparisons, we can intuitively see that the coupling algorithm has achieved 

satisfactory results in both pre- and post-prediction. 

The ARIMA-LSTM coupling algorithm calculates the Lr coefficient, which in turn determines the 

ICP coefficient and the ICU coefficient. This approach provides a more accurate reflection of the risk 

associated with insurance companies underwriting in a specific region. We collected data from key 

regions in the United States for standardization. According to the three-level insurance strategy, the 

major regions of the United States are divided into three categories based on the size of the ICU 

coefficient, and different insurance policies are implemented. In the category with higher ICU 

coefficients, it is not recommended to underwrite or the fee is increased to 1% of the claim fee, and the 

insurance cap is set at word-sub 50,000 per single case. The middle category maintains the original 

insurance strategy (the fee accounts for 0.5% of the claim fee). The category with the lowest ICU factor 

encourages customers to purchase insurance by reducing the ratio of premiums to benefits to 0.1%. 

The overall flow of the ICU model is illustrated in the following figure: 

 

Figure 6. Flow chart of Insurance Company Underwriting Model 

The analysis of whether customers purchase insurance is shown below: 

 

Figure 7. Buy or not to buy 
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The neural network graph we constructed is shown in Figure 8: 

 

Figure 8. LSTM network structure  

 

Figure 9. Data visualization on Yi and Lr coefficients 

 

Figures 10. CBP and ICP coefficients  

We selected two states, New Jersey and Oregon, for the analysis of insurance metrics. As depicted in 

the figure below, New Jersey has a higher ICU coefficient, while Oregon has a lower ICU coefficient. 

Therefore, our model suggests that insurers should not underwrite in the New Jersey area. 

Alternatively, they could achieve cost control by significantly increasing the insurance purchase amount 

and setting the maximum cap of a single insurance claim at no more than $500,000. 

In the Oregon region, insurers face an extremely low underwriting risk. Therefore, we encourage 

insurers to expand their market presence in this region by, for example, further reducing the insurance 

purchase amount to incentivize customers to buy insurance. 
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Figure 11. ICU coefficients for major U.S. states 

5.  Conclusion 

In this paper, we present an insurance model for evaluating catastrophic risk that has broad practical 

value. We selected the 48 contiguous states in the United States as the standard database. All the data is 

included in the assessment insurance model. The CBP coefficients are calculated using K-means 

clustering. The ICU coefficients for each region are derived from the ICP coefficients, and finally, the 

coefficients are categorized into three intervals, which form the insurance company’s underwriting 

model. The states of New Jersey and Oregon were selected for evaluation to assess high-risk areas in 

New Jersey and low-risk areas in Oregon. Recommendations will be provided based on the analysis. 

Our model suggests not underwriting in areas with high ICU coefficients or setting limits on single 

maximum amounts; maximizing profits by encouraging people to underwrite in areas with low ICUs 

and promising higher payouts to stimulate purchases. 

Based on cross-referencing U.S. insurance company claims data over the years, we have found that 

following our underwriting model can result in greater profit margins for insurance companies; In 

addition, our experimental data observation reveals that cities and regions in coastal areas seem to be 

more vulnerable to mega-hazards. 
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