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Abstract. Scattering is discussed in classical mechanics, quantum mechanics, and quantum field 

theory, which shows it is an important part of physics subject. From the Rutherford scattering in 

classical mechanics to the simple case of a potential barrier impeding the propagating wave in 

quantum mechanics, scattering problems seem trivial initially but get much more complicated 

with the study. The scattering theory developed along with the improvement and discovery in 

physics, and it brings lots of benefits and techniques for researchers from different science fields. 

To understand the scattering, finding the scattering is a good way to build up the connection 

between the fundamental theory and intuitive understanding. Specifically, the author wants to 

emphasize the scattering amplitude in the passage, which repeals the fundamental things of 

scattering, and the article would include some discussion of the properties of the Green function, 

which is a powerful mathematical tool for physicists. The author tries to show the scattering 

amplitude’s beauty through the discussion. Then, link them with the quantum field theory of 

scattering. 
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1.  Introduction 

The scattering is mentioned hundreds of times in the textbook, and all the classical mechanics, quantum 

mechanics, and quantum field theory talk about it. The interaction between the potential and the incident 

propagating radiations like particles and electron magnetic waves. The trajectory of scattered radiation 

would change from the original one. From the classical experiment by E. Rutherford, the differential 

cross-section is involved [1]. Scattering has wide applications related to people’s daily life. For example, 

the CV Raman’s study on Raman spectroscopy [2]. It allows people to study molecules’ vibrational and 

rotational modes and is widely applied in chemistry to identify and analyze chemical substances. J.J. 

Thomason discovered the nucleus by scattering [3]. Bragg’s law, found by Lawrence Bragg and Henry 

William Bragg based on Laue condition, opens the door for analyzing the crystal structures for 

Crystallography using X-ray diffraction [4]. Scattering plays a critical role in modern science 

development, and it provides various methods for different subjects like physics, chemistry, astronomy, 

biology, engineering, etc.  

To understand the scattering, the cross-section reflected by dσ doing integral with solid angle dΩ, 

and dσ  is the number of particles scattered into dΩ  per unit time divided by the flux of incident 

particles (number of particles per area per time). Then, there is the relation between differential cross 

section and scattering amplitude: the differential cross section dσ per solid angle dΩ is the scattering 
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probability, which is the modulo square of the scattering amplitude people are interested in. After 

receiving the scattering amplitude, people can do many meaningful things with it. Ghosh S and Chandra 

V calculate the vacuum cross-section of a propagator [5]. Z Haba studies wave propagation in 

inhomogeneous medium [6].  

During this paper, the author would first find the meaning and definition of the scattering amplitude. 

Then, two methods, partial wave analysis, and Green’s function, are discussed to find the representations 

of scattering amplitude. Next, by discussing the scattering amplitude, the author finally finds the Green 

function he used and tries to show how it relates to the quantum field theory. To be more specific, the 

whole derivation of scattering amplitude would be based on the elastic scattering (the magnitude of 

momentum is invariant).  

2.  Calculation of scattering amplitude 

For the scattering, first focus on the simple case, the central hard-sphere potential ideally. This means 

the incident wave acts like a plane wave or say particle if it is very far away from the potential. Then, 

people can represent the incident wave as ψin(r) = eikz if people define the plane propagating in z-

direction. Also, for the scattering, the scattered wave could go in an arbitrary direction, so the wave 

would go like a spherical wave. ψsc(r) = eikr, but the format needs to use the 
eikr

r
, to represent the 

density of the probability of transmitting spherically. Also, needs to multiply with a factor f(θ, φ)in 

front of it, which means the measuring angle of scattering wave with a solid angle. Thus, the total wave 

function would look like 

𝜓(r) = ψ
in
(r)+ψ

sc
(r) = eikz + 𝑓(𝜃, 𝜑)

eikr

r
= eikz + 𝑓(𝜃)

eikr

r
(1) 

Here, the factor 𝑓  is called scattered amplitude. There are two ways to access the scattering 

amplitude, and this paper will discuss them separately in detail. 

2.1.  Partial wave analysis method 

The wave function can be separated by variables and written as 𝜓(𝑟) = 𝑅(𝑟)𝑌𝑙
0(𝜃) due to the spherical 

symmetry. In the general case, 𝜓(𝑟) = 𝑅(𝑟)𝑌𝑙
𝑚(𝜃, 𝜙). The general spherical harmonic term has the 

representation of 𝑌𝑙
𝑚(𝜃, 𝜙) = (−1)𝑚√

2𝑙+1

4𝜋

(𝑙−𝑚)!

(𝑙+𝑚)!
𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙 , associated Legendre part is 

𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃) = (−1)𝑚(1 − 𝑐𝑜𝑠𝜃2)

𝑚

2 (
𝑑

𝑑𝑐𝑜𝑠𝜃
)
𝑚
𝑃𝑙(𝑐𝑜𝑠𝜃) , and Legendre polynomial would be 

𝑃𝑙(𝑐𝑜𝑠𝜃) =
1

2𝑙𝑙!
(

𝑑

𝑑𝑐𝑜𝑠𝜃
)
𝑙
[(𝑐𝑜𝑠𝜃)2 − 1]. Noticed that, for the spherical case, the 𝑚 = 0 is independent 

from 𝜙, so the 𝑌𝑙
𝑚(𝜃, 𝜙) = 𝑌𝑙

0(𝜃) = √
2𝑙+1

4𝜋
𝑃𝑙
0(𝑐𝑜𝑠𝜃) and 𝑃𝑙

0 is just 𝑃𝑙. Now, move the attention to 

the radial function. Choose some u(r) that r𝑅(𝑟) = 𝑢(𝑟) , and people can write down the time-

independent Schrödinger equation  

−
ℏ

2

2m

d
2
u

dr2
+ [V(r) +

ℏ
2

2m

l(l + 1)

r2
] 𝑢 = 𝐸𝑢 (2) 

For the incident part, considered the 𝑟 is very large so that no potential acts on plane wave which 

behaves like a free particle with energy 
ℏ2𝑘2

2𝑚
. Now 

−
ℏ

2

2m

d
2
u

dr2
+ [V(r) +

ℏ
2

2m

l(l + 1)

r2
] u = −

ℏ
2

2m

d
2
u

dr2
+ 0u = Eu =

ℏ
2
k

2

2m
u. (3) 

Canceled the 
ℏ2

2𝑚
 term to get 

𝑑2𝑢

𝑑𝑟2
= −𝑘2𝑢, and people have an exact solution of 𝑢(𝑟) = 𝐴𝑒𝑖𝑘𝑟 +

𝐵𝑒−𝑖𝑘𝑟. The B is zero if it is able to define the k is the propagating direction of incident wave alone z 

axis, 𝑢(𝑟) = 𝐴𝑒𝑖𝑘𝑟. If the distance r is not so far from potential (V(r) is still about 0), the Schrödinger 

equation would take consideration of 𝑟 term. Namely, 
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−
ℏ

2

2m

d
2
u

dr2
+ [V(r) +

ℏ
2

2m

l(l + 1)

r2
] u = −

ℏ
2

2m

d
2
u

dr2
+ [

ℏ
2

2m

l(l + 1)

r2
] u =

ℏ
2
k

2

2m
u (4) 

and 

−
d

2
u

dr2
+ [

l(l + 1)

r2
] u = k

2
u. (5) 

Let 𝜌 = 𝑘𝑟,  the above equation would have −
d2u

dρ2
+ [

l(l+1)

ρ2
] u = u. For the upper type of equation, 

the solution would be 𝑢(𝜌) = 𝐴𝜌𝑗𝑙(𝜌) + 𝐵𝜌𝑛𝑙(𝜌), where  𝑛𝑙 (spherical Neumann) and 𝑗𝑙 (spherical 

Bessel). Putting it back to 𝑟 , it is found that 𝑢(𝑟) = 𝐴𝑟𝑗𝑙(𝑘𝑟) + 𝐵𝑟𝑛𝑙(𝑘𝑟) . Taking the limit for r 

approaching to zero, it is found that 𝑗𝑙 is nonsingular but 𝑛𝑙 is singular, so one can just discard the 

Neumann part since it doesn’t have physical meaning [7]. Then, for 𝑟 approaching infinity, 𝑗𝑙(𝑘𝑟) ≈
1

𝑘𝑟
𝑠𝑖𝑛 (𝑘𝑟 −

𝑙𝜋

2
). For the incident wave,  

eikz = eikrcosθ =∑ (2l + 1)il
∞

l=0
Pl

0j
l
=∑ √4π(2l + 1)ilj

l
(kr)

∞

l=0
Yl

0(θ) (6) 

Therefore, for far away incident wave, one has 

ψ
in
(r) = eikz =∑ √4π(2l + 1)il

∞

l=0
Yl

0(θ)
1

2ik
[
e

i(kr−
lπ
2
)

r
−

e
−i(kr−

lπ
2
)

r
] . (7) 

Conventionally, one calls +𝑘 outgoing and −𝑘 incoming. Next, remember the scattering in the 1D 

case, the wave function has incident wave and reflect back due to a step potential barrier. 𝜓(𝑟) =

𝐴(𝑒𝑖𝑘𝑧 − 𝑒−𝑖𝑘𝑧) for V(z)=0, and 𝜓(𝑟) = 𝐴(𝑒𝑖𝑘𝑧 − 𝑒𝑖(2𝛿−𝑘𝑧)) for potential is not equal to zero. The δ 

is the phase shift. Then, rewrite the scattering process with the phase shift delta. Since the probability 

density must be identical, then 

ψ(r) =
1

k
∑ √4π(2l + 1)il

∞

l=0
Yl

0(θ)
1

2i
[
e

i(kr−
lπ
2
+δ)

r
−

e
−i(kr−

lπ
2
)

r
] (8) 

and 

ψ(r) = eikz + f(θ)
eikr

r
=∑ √4π(2l + 1)il

∞

l=0
Yl

0(θ)
1

2ik
[
e

i(kr−
lπ
2
)

r
−

e
−i(kr−

lπ
2
)

r
] + f(θ)

eikr

r
. (9) 

After canceling the same incoming part, the author has the outgoing part equation of 𝜓𝑠𝑐(𝑟) =

1

𝑘
∑ √4𝜋(2𝑙 + 1)𝑖𝑙∞
𝑙=0 𝑌𝑙

0(𝜃)
1

2𝑖
(𝑒2𝑖𝛿 − 1)

𝑒
𝑖(𝑘𝑟−

𝑙𝜋
2
)

𝑟
= 𝑓(𝜃)

𝑒𝑖𝑘𝑟

𝑟
. Finally, the scattering amplitude can be 

written as 𝑓(𝜃) =
1

𝑘
∑ √4𝜋(2𝑙 + 1)𝑖𝑙∞
𝑙=0 𝑌𝑙

0(𝜃)𝑒𝑖𝛿𝑠𝑖𝑛(𝛿). Also, noticed that the scattering amplitude 

is the summation of individual scattering amplitudes 𝑓(𝜃) = ∑ 𝑓𝑙(𝜃)𝑙   for 𝑓𝑙(𝜃)  with 

√4𝜋(2𝑙 + 1)𝑖𝑙𝑗𝑙(𝑘𝑟)𝑌𝑙
0(𝜃).  

2.2.  Born approximation method 

The other method to access the scattering amplitude would be the Born approximation. Go back to the 

time independent Schrödinger equation −
ℏ2

2m
∇2ψ(r) + V(r)ψ(r) = Eψ(r). For free particle, 

ℏ2k2

2m
= E, 

rewrite (∇2 + k2)ψ(r) =
2m

ℏ2
V(r)ψ(r) ≡ Q. Now, the time independent Schrödinger equation becomes 

a linear operator acting with wave function and gets some source function about the potential. The format 

of the equation is a type of inhomogeneous Helmholtz equation, which can be solved by introducing the 

Green function. The Green function has the properties LG = δ, for L as a linear operator and right-hand 

side is the delta function. Lφ = Q, the φ can be written as ψδ = GQ, or in integral format ψ(r⃗) =
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2m

ℏ2
∫V(r0⃗⃗⃗⃗ )G(r⃗ − r0⃗⃗⃗⃗ )d

3r0, also use the properties of Lψ0 = 0 won’t affect the final result after applying 

the operator is 

(∇2 + k
2)ψ(r) = (∇2 + k

2)ψ
0
(r) +

2m

ℏ
2
∫V(r0⃗⃗⃗)[(∇

2 + k
2)G(r⃗ − r0⃗⃗⃗)]d

3
r0 ψ(r0⃗⃗⃗), (10) 

which can be simplified as 

(∇2 + k
2)ψ(r) =

2m

ℏ
2
∫V(r0⃗⃗⃗)δ(r − r0)d

3
r0ψ(r0⃗⃗⃗) =

2m

ℏ
2

V(r)ψ(r) = Q. (11) 

Therefore, for upper free particle plane wave behavior problems can lead to the ψ0(r) = eikr since 

eikz + f(θ)
eikr

r
 . bbviously, (∇2 + k2)eikz = 0 , and it is safe to let ψ0  as an incident wave. Next, 

consider the delta function doing Fourier transform δ(r⃗ − r0⃗⃗⃗⃗ ) =
1

(2π)3
∫d3qei[q⃗⃗⃗∙(r⃗⃗−r0⃗⃗⃗⃗⃗)] , and G(r⃗ −

r0⃗⃗⃗⃗ ) = ∫d3qei[q⃗⃗⃗∙(r⃗⃗−r0⃗⃗⃗⃗⃗)] G(q⃗⃗)̃ for transform Green from position space to momentum space. Put those 

two into the LG and delta (−q2 + k2)G̃(q⃗⃗)= 
1

(2π)3
 . Thus, the Green function can be represented by a 

transformed one, 

G(r⃗ − r0⃗⃗⃗) = G(R⃗⃗⃗) = −
1

(2π)3
∫ d

3
qei[q⃗⃗∙R⃗⃗⃗]

1

q2 − k
2
= −

1

(2π)2iR
∫

eiqR

q2 − k
2

∞

−∞

dq (12) 

The 𝑞 = +𝑘 and 𝑞 = −𝑘 would be considered as two critical points for the Green function [8,9]. 

Using the residue theorem to calculate the contour integral to get 

G(R⃗⃗⃗) = −
1

4π2iR
∫

eiqR

q2 − k
2

∞

−∞

dq = −
eikR

4πR
(13) 

which can be written as G(r⃗ − r0⃗⃗⃗⃗ ) = −
eik|r⃗⃗−r0⃗⃗⃗⃗⃗⃗ |

4π|r⃗⃗−r0⃗⃗⃗⃗⃗|
 [8]. 

This exponential term has the same appearance as the outgoing wave, call it G+(r⃗ − r0⃗⃗⃗⃗ ) =

−
eik|r⃗⃗−r0⃗⃗⃗⃗⃗⃗ |

4π|r⃗⃗−r0⃗⃗⃗⃗⃗|
 . it is reasonable to call it an outgoing solution if author lets G=g(r)/r(means r is not zero) and 

apply the same operator 
d2g

drr
+ k2 = 0 (delta is zero), which has been shown before for this ordinary 

differential equation. In addition, the G(r) = A
eikr

r
− B

e−ikr

r
, so G+ ∝

eikr

r
 as the outgoing solution [8, 

9]. The last step is put it back to wave equation (far from potentialeikz + f(θ)
eikr

r
), 

ψ(r⃗) = eikin
⃗⃗⃗⃗⃗⃗ ∙r⃗ −

m

2πℏ
2
∫V(r0⃗⃗⃗)

eikin|r⃗−r0⃗⃗⃗ ⃗|

|r⃗ − r0⃗⃗⃗|
d

3
r0ψ(r0⃗⃗⃗) . (14) 

Then, the first order born approximation can be considered as the original function with r and to 

substitute r0 with another same format wave function ψ(r⃗) = eikin
⃗⃗ ⃗⃗ ⃗⃗ ⃗∙r⃗⃗ −

m

2πℏ2
∫V(r0⃗⃗⃗⃗ )

eikin|r⃗⃗−r0⃗⃗⃗⃗⃗⃗ |

|r⃗⃗−r0⃗⃗⃗⃗⃗|
d3r0 e

ikin⃗⃗ ⃗⃗ ⃗⃗ ⃗∙r0⃗⃗⃗⃗⃗ −

[−
m

2πℏ2
∫V(r0⃗⃗⃗⃗ )

eik|r⃗⃗−r0⃗⃗⃗⃗⃗⃗ |

|r⃗⃗−r0⃗⃗⃗⃗⃗|
d3r0

m

2πℏ2
] ∫ V(r00⃗⃗ ⃗⃗ ⃗⃗ )

eikin|r0⃗⃗⃗⃗⃗⃗ −r00⃗⃗⃗⃗⃗⃗⃗⃗⃗|

|r0⃗⃗⃗⃗⃗−r00⃗⃗ ⃗⃗ ⃗⃗ ⃗|
d3r00ψ(r00⃗⃗ ⃗⃗ ⃗⃗ ) . Thus, let 𝑈(𝑟) = 

2𝑚

ℏ2
𝑉(𝑟) , the 

pattern is clear right now,  

ψ(r⃗) = eikin
⃗⃗⃗⃗⃗⃗ ∙r⃗ +∫GUeikin

⃗⃗⃗⃗⃗⃗ ∙r⃗ +∫GU∫GUeikin
⃗⃗⃗⃗⃗⃗ ∙r0⃗⃗⃗ ⃗ +∫GU∫GU∫GUeikin

⃗⃗⃗⃗⃗⃗ ∙r00⃗⃗⃗⃗⃗⃗ +⋯ (15) 

It is possible to find more and more precise solution if having higher order of approximation. Back 

to first order approximation with large r, |r⃗ − r0⃗⃗⃗⃗ |
2 = (r⃗2 − 2r⃗ ∙ r0⃗⃗⃗⃗ + r0⃗⃗⃗⃗

2
)1/2 ≈ r2(1 − 2

r⃗⃗∙r0⃗⃗⃗⃗⃗

r2
) , and 

|r⃗ − r0⃗⃗⃗⃗ | ≈ r − r̂ ∙ r0⃗⃗⃗⃗  . Thus, eik|r⃗⃗−r0⃗⃗⃗⃗⃗| ≈ eikre−ik⃗⃗⃗∙r0⃗⃗⃗⃗⃗ , and 
eik|r⃗⃗−r0⃗⃗⃗⃗⃗⃗ |

|r⃗⃗−r0⃗⃗⃗⃗⃗|
≈

eikr

r
e−ik⃗⃗⃗∙r0⃗⃗⃗⃗⃗ . Now the incident wave 

can be chosen as ψ0, 
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ψ(r⃗) ≅ eikz −
m

2πℏ
2
[∫ e−iksc

⃗⃗⃗⃗⃗⃗ ∙r0⃗⃗⃗ ⃗ V(r0⃗⃗⃗)ψ(r0⃗⃗⃗)d
3
r0]

eikr

r
(16) 

For ψ(r0⃗⃗⃗⃗ ),  the ψ(r0⃗⃗⃗⃗ ) = eik⃗⃗⃗∙r0⃗⃗⃗⃗⃗ + perturbationterm , by approximate tiny perturbation and very 

small change from propagating direction z. Therefore, eikz ≈ eikin
⃗⃗ ⃗⃗ ⃗⃗ ⃗∙r0⃗⃗⃗⃗⃗  and 

ψ(r⃗) ≅ eikz −
m

2πℏ
2
[∫ e−iksc

⃗⃗⃗⃗⃗⃗ ∙r0⃗⃗⃗ ⃗ V(r0⃗⃗⃗)e
ikin
⃗⃗⃗⃗⃗⃗ ∙r0⃗⃗⃗ ⃗d

3
r0]

eikr

r
= eikz + f(θ,φ)

eikr

r
(17) 

Here, fBorn(θ, φ) ≈ −
m

2πℏ2
[∫ eiG⃗⃗⃗∙r0⃗⃗⃗⃗⃗ V(r0⃗⃗⃗⃗ )d

3r0]. 

3.  Application of scattering amplitude 

The Scattering amplitude mainly can help people find the cross section. The bptical Theorem can be 

derived from 𝑓, and receive σ =
4π

k
Im[f(0)].  

 

Figure 1. Illustration of scatter process. (a) as 𝑠 channel and (b) as 𝑡 channel [5]. 

The vacuum cross section under a b+(k) + b−(p) → b+(k′) + b−(p′) scattering can be calculated 

[5]. The particle B0 , b+ , b−  are created (annihilated) by real (complex) scalar field Φ,ϕ,ϕ†  with 

ℒinteraction = gΦϕϕ†, invariant amplitudes get from Feynman rules for 𝑠 and 𝑡 channels (see Figure 

1 for illustration) are ℳs = g2 [
1

s−M2+iϵ
] andℳt = g2[

1

t−M2+iϵ
] , and the aandelstam variable 𝑠, 𝑡, 𝑢 

are defined as s = (k + p)2 = (k′ + p′)2t = (k − k′)2 = (p − p′)2u = (k − p′)2 = (p − k′)2  [5]. 

During the interaction, 𝑀 is the mass of unstable particles, and as B0 for this case. The total cross 

section is σ(s) =
1

16πλ(s,m2,m2)
∫ dt|ℳs +ℳt|

20

−
λ(s,m2,m2)

s

. The total cross-section is easily received by 

applying 

σ ≡
1

4EAEB|v|
∫
|ℳ|2

(4π)2
δ

4(p
A
+p

B
− p′

A
− p′

B
)

d
3
p′

A

E′
A

d
3
p′

B

E′
B

=
1

4|p|W

1

(4π)2

|p|

W
∫|ℳ|2dΩ . (18) 

Next, the author accesses the same thing by using optical theorem under zero external magnetic field 

and get the final result by adding a magnetic field (weak and strong) to solve scattering cross section 

numerically. The green function is a powerful tool that is called a propagator in quantum field theory. 

Ignore relativity, and it has the format of G(x, t; x′, t′) =
1

iℏ
Θ(t − t′)K(x, t; x′, t′), the upper derivation 

is G(x, t; x′, t′) = K(x, t; x′, t′) = K(x; x′) since time-independent potential. The relativistic case would 

be 𝐺(𝑥, 𝑦) =
1

(2𝜋)4
∫𝑑4𝑝

𝑒−𝑖𝑝(𝑥−𝑦)

𝑝2−𝑚2∓𝑖𝜖
 . Also, in the expression G(R⃗⃗⃗) = −

1

(2π)3
∫d3qei[q⃗⃗⃗∙R⃗⃗⃗]

1

q2−k2
 , there 

should be a iϵ term to do Cauchy integral, and this format of 𝐺 satisfy the Feynman propagator (not in 

the same side of real axis). For non-relativistic cases, people can calculate the Feynman propagator in 

momentum space by Schwinger’s method [10]. Haba et al. use the Green function to discuss wave 

propagation in an inhomogeneous medium [6]. For the case, (B ∂0
2 + ∂jA∂j)G = δ, can finally yield 

the 
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G(x0, x; x0
′ , x′) = ∫ dω∫ dτ E [exp(−ω2 ∫ B (q

s
(x)) ds

τ

0

)) ex p (iω(x0 − x0
′ )) δ(q

τ
(x) − x′). (19) 

The spatial singularity and the decrease at infinity of the potential can be determined from Eq. (19). 

4.  Conclusion 

In conclusion, scattering amplitude plays a crucial role in people’s understanding of how particles 

interact and exchange energy, and the concepts are essential in a wide range of scientific disciplines: 

nuclear physics, particle physics, and material science. Scattering amplitude serves as a mathematical 

representation of the probability of particles scattering at different angles or momenta during a collision, 

which provides a way to describe the interaction involving the exchange of virtual particles. The 

amplitude can be calculated using various techniques, such as the Partial wave analysis, the Born 

approximation, or more advanced methods. These calculations develop valuable insights into the 

underlying forces governing the interaction, uncovering the fundamental laws of physics. In this paper, 

the author finishes the mathematical derivation of scattering amplitude. From the discussion, both the 

scattering amplitude and the green function method show the importance and power of solving the 

scattering problem. Then, the brief discussion of the application connects those scattering amplitude and 

green functions to quantum field theory, which can be much more helpful in solving practical problems. 

Both two methods used above are approximate scattering amplitude, and they still need to be done with 

it more precisely. People usually only did the first order of them since the second order would become 

highly complicated mathematically. In summary, these methods enable scientists to uncover the 

mysteries of particle physics and contribute to human’s knowledge. 
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