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Abstract. Group motion exists widely in nature. Physicists use abstract models, such as the 

Vicsek model, to simplify group motion to obtain universal laws. However, the order parameters 

and phase transition types that describe the characteristics of the Vicsek model system are still 

controversial. For example, how to characterize the order parameters and types of phase 

transitions that characterize the system. This paper starts with the eigen microstate method and 

studies the Vicsek model. First, the continuous phase transition in the system is deeply studied 

through scaling analysis, and two critical exponents about the noise are obtained. Second, 

considering the density effect, similar to the noise study, three eigen microstates in the Vicsek 

model are revealed through scaling analysis, showing discontinuous and continuous phase 

transitions. Moreover, it is proved that in the actual infinite system, continuous phase transition 

and discontinuous phase transition still exist. Finally, the experimental data under different noises 

and densities are obtained through a large number of numerical simulations, and the phase 

diagram of the Vicsek model is depicted. 

Keywords: group motion, eigen microscopic state, phase transition critical phenomenon, noise, 

density, phase diagram 

1.  Introduction 

Group movement is an orderly movement that occurs spontaneously in a system composed of many 

self-driven units [1-3]. These phenomena are studied through experiments, simulations [4], and theory 

[5, 6]. One of the most famous models is the Vicsek model introduced by Tamás Vicsek et al. in 1995 

[7]. 

In previous work, the average velocity of all particle motions was used as the order parameter of the 

Vicsek [7-9] model. Tamás Vicsek and others believe that the type of phase transition that occurs in the 

Vicsek model is a continuous phase transition. However, the continuity of the Vicsek model phase 

transition has been questioned by Chaté et al. [8, 9]. Chaté et al. believe that in real systems, the Vicsek 

model has this discontinuity characteristic. Therefore, the continuity of phase transitions in the Vicsek 

model is not exactly defined. 

Huepe et al. [10] questioned the use of velocity as the order parameter of the Vicsek model. They 

discussed the number density of particles that act on particles as the order parameter of the Vicsek model, 

and considered that the phase transition type of the Vicsek model is continuous phase transition. 
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Due to disputes over the order parameters and phase transition types of the Vicsek model, continuous 

phase transitions and discontinuous phase transitions appear in different regions in the phase diagram of 

the Vicsek model drawn by R. T. Wicks et al. [11]. 

Xu Li et al. applied the eigen microstate method to the study of Vicsek model and found that there 

are three main eigen microstates [12]. Continuous phase transition and discontinuous phase transition 

exist at the same time. However, Li et al. [12] only discussed the impact of noise on the Vicsek model 

in a small noise range, and did not discuss the impact of density on the Vicsek model, and did not 

calculate the specific critical exponent of the Viscek model. It is difficult to describe the behavior of the 

Vicsek model in the entire phase space. 

Based on this, this paper first further studies the Vicsek model under the influence of noise, and 

calculates the size of the specific critical exponent. Secondly, this paper discusses the behavior of the 

Vicsek model under the influence of density. Finally, through a large number of numerical simulations, 

the Vicsek model is drawn phase diagram, thereby illustrating the behavior within the phase space of 

the Vicsek model. And the entire phase space is divided into an ordered liquid phase, a disordered liquid 

phase, and a disordered gas phase. 

2.  Vicsek model and Eigen microstates 

Tamás Vicsek et al introduced the Vicsek model in 1995 [7]. In the model, the particle is described as 

the direction of the particle position ri(t)  and particle velocity Θi(t) . The evolution of particles is 

determined by the following two equations: 

{

Θ𝑖(𝑡) = ⟨Θ𝑗(𝑡 − ∆𝑡)⟩
|𝒓𝑖−𝒓𝑗|<𝑟

+ ∆𝜃(𝑡)

𝒓𝑖(𝑡 + ∆𝑡) = 𝒓𝑖(𝑡) + 𝑣0∆𝑡 (
cos Θ𝑖(𝑡)

sin Θ𝑖(𝑡)
)

, (1) 

where 〈Θj(t)〉|ri−rj|<r is the average motion direction of particles within distance r; and ∆θ(t) is in the 

range of [− η 2⁄ , η 2⁄ ]  uniform disturbance. When the particle moves, it moves in a new direction 

according to the given speed v0. 

At the initial moment, N particles will be evenly distributed in the periodic two-dimensional space 

of L × L. 

For the Vicsek model, we introduce the neighbor number density of particle i at time t: 

ni(t) = Ni(t) πr2⁄ , (2) 

where Ni(t)  represents the number of neighbors to particle i  at time t . From this, we can get the 

fluctuation of the neighbor number density of particle i at time t. 

𝛿𝑛𝑖(𝑡) =
𝑛𝑖(𝑡) − 𝑛̅

𝑛̅
, (3) 

where n̅ is the average number density of neighbors of N particles at M time points: 

𝑛̅ =
1

𝑀𝑁
∑ ∑ 𝑛𝑖(𝑡)

𝑁

𝑖=1

𝑀

𝑡=1

. (4) 

Based on this, the state of particle i at time t can be described as: 

𝑠𝑖(𝑡) = [

cos 𝜃𝑖(𝑡)

sin 𝜃𝑖(𝑡)

𝛿𝑛𝑖(𝑡)
] , (5) 

where θi(t) is the movement direction angle of particle i at time t. Writing the state of N particles at 

time t together, and performing singular value decomposition after normalization: 
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𝐴 = ∑ 𝜎𝑛𝐴𝑛
𝐸

𝑟

𝑛 = 1

= ∑ 𝜎𝑛𝒗𝑛⨂𝒖𝑛

𝑟

𝑛 = 1

, (6) 

𝐴𝑖𝑗 = ∑ 𝜎𝑛(𝒗𝑛)𝑖(𝒖𝑛)𝑗

𝑟

𝑛 = 1

. (7) 

Furthermore, the weight Wn
E of the eigen microstate in the Vicsek model can be obtained, where 

Wn
E =  σn

2. In this way, the original Vicsek model can be used as an eigen microstate U =  [u1, u2, ⋯ , ur] 

and the probability density distribution wE =  [w1
E, w2

E, ⋯ , wr
E] corresponding to each eigen microstate. 

Then, arranging the σn corresponding to the eigen microstates in order from large to small. The greater 

the value of σn, the greater the value of Wn
E. 

3.  Expansion of scaling analysis of eigen microstate method and group motion 

In this chapter, we further analyze the phase transition of the Vicsek model under different noises, 

calculate the critical exponent of the Vicsek model, and study the phase transition of the Vicsek model 

under different densities. 

3.1.  Phase transition of Vicsek model under different noise 

The probability amplitude σn of the eigen microstate un satisfies the scaling form: 

𝜎𝑛(𝜂, 𝐿) = 𝐿−𝛽𝜂 𝜐𝜂⁄ 𝑓𝐼(ℎ𝜂𝐿1 𝜐𝜂⁄ ), (8) 

Where L is the system scale, βη is the critical exponent of σn under the influence of noise, υη is 

the critical exponent of the correlation length under the influence of noise, hη is the distance from the 

noise to the phase transition point. The system weight factor satisfies the scaling form: 

𝑊𝑛
𝐸(𝜂, 𝐿) = 𝜎𝑛

2(𝜂, 𝐿) = 𝐿−2𝛽𝜂 𝜐𝜂⁄ 𝑓𝐼
2(ℎ𝜂𝐿1 𝜐𝜂⁄ ) = 𝐿−2𝛽𝜂 𝜐𝜂⁄ 𝐹𝐼(ℎ𝜂𝐿1 𝜐𝜂⁄ ). (9) 

Taking the partial derivative of hη, then:  

𝜕𝑊𝑛
𝐸(𝜂, 𝐿)𝐿2𝛽𝜂 𝜐𝜂⁄

𝜕ℎ𝜂
= 𝐿1 𝜐𝜂⁄ 𝐹𝐼

′(ℎ𝜂𝐿1 𝜐𝜂⁄ ). (10) 

The partial derivative of Wn
E(η, L)L2βη υη⁄   with respect to hη  and the system scale L  satisfy a 

power law relationship. 

   
(a) (b) (c) 

Figure 1. (Color online) 𝐿𝑜𝑔 − 𝐿𝑜𝑔 plot of 𝑊𝐼
𝐸 versus 𝐿 around transition points: (a) 𝑊1

𝐸, 𝜂1𝑐 =
2.56 , 𝛽1𝜂 𝜈1𝜂⁄ = 0 ; (b):𝑊2

𝐸 , 𝜂2𝑐 = 2.48 , 𝛽2𝜂 𝜈2𝜂⁄ = 0.94 ; (c): 𝑊3
𝐸 , 𝜂3𝑐 = 𝜂2𝑐 = 2.48 , 𝛽3𝜂 𝜈3𝜂⁄ =

𝛽2𝜂 𝜈2𝜂⁄ = 0.94;( Li et al. [12].) 
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Taking the data of ρ = 0.5 as an example, as shown in Figure 1, the first largest eigen microstate of 

the Vicsek model undergoes a discontinuous phase transition at η1c = 2.56. As shown in Figure 1, the 

second largest eigen microstate of the Vicsek model undergoes a continuous phase transition at η2c =
2.48 and β2η ν2η⁄ = 0.94. As shown in Figure 1, the second largest eigen microstate of the Vicsek 

model undergoes a continuous phase transition at η3c = η2c = 2.48 and β3η ν3η⁄ = β2η ν2η⁄ = 0.94. 

It is consistent with the conclusion of the work of Li et al. [12]. As shown in Figure 2, the relationship 

between W2
E(η, L)L2βη υη⁄  and hηL1 υη⁄  is analyzed. It can be found that near the critical point, that is, 

within the range of η ≈ ηc and hηL1 υη⁄ ≈ 0, data at different scales can be scaled together. This means 

that within this range, the critical phase transition phenomenon of the Vicsek model still exists at 

different scales. 

  

(a)                                   (b)    

Figure 2. Log-Log plot of around transition points (a)The relationship between W2
E(η, L)L

2β
η

υη⁄
 and 

hηL1 υη⁄
 in the second largest eigen microstate at ρ = 0.5; (b): Log − Log plot of the partial derivative 

of W2
E(η, L)L

2β
η

υη⁄
  with respect to hη : 

1

υη
= 1.20 . (Since the results in the simulation analysis are 

discontinuous, the difference is used instead of the partial derivative here.) 

As shown in Figure 2, by calculating the partial derivative of W2
E(η, L)L2βη υη⁄  with respect to hη, 

and analyzing it as the system scale L changes, it can be found that a power law relationship is satisfied 

between them. The reciprocal 20.11 =nv   of a straight line in Figure 2 whose slope is a critical 

exponent. The reciprocal of the critical exponent. Then the critical exponent βη = 0.783  of the 

probability amplitude σn under the influence of noise and νη = 0.833 of the correlation length under 

the influence of noise can be ontained. 

4.  Conclusion 

This paper explores the scaling form and weight factor critical exponent of the continuous phase 

transition by an in-depth study of the microstate characteristics of the Vicsek model under different noise 

and density conditions, using the finite scale scaling method. The authors highlight the influence of 

density on the Vicsek model, revealing the phase transition behavior that emerges in different eigen 

microstates. By comparing the behavior under different parameter conditions, it can be found that noise 

play a key role in the Vicsek model.  
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