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Abstract. Maximum likelihood estimation is a breakthrough in the history of statistics, which 

overcomes the main weakness of Bayesian estimation and has been widely used in various fields, 

such as language and image processing, and system identification, etc. This paper analyzes the 

application of maximum likelihood estimation on different mathematical models. It is proved 

that the universality of maximum likelihood estimation plays an important role in promoting the 

continued in-depth research on maximum likelihood estimation. This paper also analyzes and 

summarizes the application of maximum likelihood estimation to specific parameters in different 

mathematical models. In addition, this work conducts research on the application conditions of 

maximum likelihood estimation and its main properties, such as variability, consistency, and 

asymptotic normality, etc. In different mathematical models, such as the annealing furnace 

efficiency system, gamma environmental factors and adaptive algorithm, etc. Therefore, this 

paper finds the reason for why the maximum likelihood estimate is widely used in various fields. 

Keywords: Maximum likelihood estimation, the annealing furnace efficiency system, gamma 

environmental factors, adaptive echo cancellation algorithm. 

1.  Introduction 

Maximum likelihood estimation is a parameter estimation method widely used in statistics. It mainly 

involves the training process of probability models, especially parameter estimation. In the training of 

probabilistic models, determining parameters is a crucial step, because the selection of parameters will 

directly affect the performance of the model [1]. The origin of maximum likelihood estimation can be 

traced back to 1822, when it was first proposed by the German mathematician Gauss when dealing with 

the normal distribution. It became widely used after British statistician R. A. Fisher demonstrated its 

correlation properties in 1921. In the 20th century, Wald discussed the asymptotic properties of 

maximum likelihood estimation in detail in his works, providing a range of theoretical support for the 

application of maximum likelihood estimation in large sample situations. 

In addition to the field of statistics, maximum likelihood estimation is also widely used in other fields, 

such as machine learning, natural language processing, image processing, etc. For example, in the field 

of machine learning, maximum likelihood estimation is widely used in parameter estimation of various 

models. Christopher M. Bishop introduced in detail the application of maximum likelihood estimation 

in machine learning models such as logistic regression, naive Bayes classifiers, and hidden Markov 

models in his 2006 book “Pattern Recognition and Machine Learning”. It introduces in detail the 

application of maximum likelihood estimation in machine learning models such as logistic regression, 
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naive Bayes classifier, and hidden Markov model. In 2012, “Econometric Analysis” written by William 

H. Greene discussed the application of maximum likelihood estimation in economic models such as 

time series analysis and regression analysis, as well as related statistical properties and hypothesis testing. 

At present, with the widespread use of maximum likelihood estimation, there is insufficient research on 

the applicability range of using it to estimate parameters, which is of great significance to the 

development of maximum likelihood estimation. The author explores the applicability of parameter 

estimation and application process through multiple application examples of maximum likelihood 

estimation. 

The aim of this paper is to explore the application of maximum likelihood estimation in mathematical 

models in different fields. The author will firstly present that in order to improve the online performance 

of the annealing furnace, he established a mathematical model of the heat balance of the annealing 

furnace and constructed a data diagnosis method using the idea of maximum likelihood estimation. Next, 

it also includes the application in annealing furnace online energy efficiency monitoring system, 

estimating gamma distribution environmental factors, and block-sparse least mean square algorithm [2]. 

Through the exploration of three mathematical models, this paper finds details of the application of 

maximum likelihood estimation in different mathematical models and discover the reasons for its 

widespread use. 

2.  Principle of preparation 

2.1.  Basic definitions 

Definition 1 [1]: Suppose the population X be a discrete random variable with a probability distribution 

column P { X = x}  =  p(x;  θ) , where θ = {θ1, θ2, . . . , θn}  is an unknown parameter. Suppose 

(𝑋1, 𝑋2, . . . , 𝑋𝑛) Is the sample of size n derived from the population, so that the joint distribution law of 

(𝑋1, 𝑋2, . . . , 𝑋𝑛)  is ∏ 𝑝(𝑥𝑖;  𝜃)
𝑛
𝑖=1  . Then suppose a set of observations of (𝑋1, 𝑋2, . . . , 𝑋𝑛)  is 

(𝑥1, 𝑥2, . . . , 𝑥𝑛) , so that the probability of observations derived is  

L(θ) = L(x1, x2, . . . , xn) =∏ 𝑝(𝑥𝑖; 𝜃)
𝑛

𝑖=1
. (1) 

It is a function of parameter θ, which is noted as L(θ). And it is called as Likelihood function. 

Definition 2 [2]: Suppose (𝑥1, 𝑥2, . . . , 𝑥𝑛) is certain, to find the value of θ, which makes  

L(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃) = max L(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝜃), (2) 

where  𝜃(𝑥1, 𝑥2, . . . , 𝑥𝑛)  is noted as Maximum likelihood estimates, and the corresponding statistic 

θ̂(X1, X2, . . . , Xn) is noted as Maximum likelihood estimator, it can also be called 𝜃 or MLE.  

2.2.  Basic theorems 

Theorem 1 (Consistency). Suppose the sample of the population X is 𝑋1, 𝑋2, . . . , 𝑋𝑘, and set 𝜃∗ be the 

real value of θ . Then define 𝑀𝑘(𝜃)  =  
1

𝑘
∑ log

𝑓(𝑋𝑖; 𝜃)

𝑓(𝑋𝑖; 𝜃∗)
𝑘
𝑖  , and 𝑀𝑘(𝜃)  =  −𝐷(𝜃∗, 𝜃) . Assume that 

sup | 𝑀𝑘(𝜃)  −  𝑀(𝜃) |  
𝑞
→  0, and for any ε > 0, sup

θ: | θ∗ − θ | ≥ ε
 M(θ)  <  Mk(θ), then order 𝜃𝑘 represent 

the maximum likelihood estimation, such that 𝜃𝑘  
𝑞
→  𝜃 [3]. 

Proof: In order to make Mk(θ) be maximum, one can get 𝑀𝑘(𝜃̂𝑘) ≥ 𝑀𝑘(𝜃∗), by 𝜃𝑘 is the maximum 

likelihood estimate. So that 

𝑀(𝜃∗) − 𝑀(𝜃𝑘)  = 𝑀(𝜃∗) − 𝑀(𝜃𝑘) + 𝑀𝑘(𝜃∗)  − 𝑀𝑘(𝜃∗) 

≤ 𝑀(𝜃∗) − 𝑀(𝜃𝑘) + 𝑀𝑘(𝜃𝑘) − 𝑀𝑘(𝜃∗)  ≤  sup | 𝑀𝑘(𝜃)  −  𝑀(𝜃) |  + 𝑀(𝜃∗) −𝑀𝑘(𝜃∗)
𝑞
→  0. (3)
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According to sup | Mk(θ)  −  M(θ) |  
q
→  0, so that to ∃  δ >  0, there exists P( M(θ̂k)  < M(θ∗) −

δ)  →  0 , and to ∀  ε >  0 , by 
sup

θ: | θ∗ − θ | ≥ ε
 M(θ)  <  Mk(θ) , there exists  δ >  0 ,   θ̂k − θ∗ | ≥  ε,  it 

sets  M(θ)  < M(θ∗) − δ, then there exists 

P( | θ̂k − θ∗ | ≥  ε)  ≤   P( M(θ̂k)  < M(θ∗) − δ)  →  0. (4) 

Theorem 2 (Asymptotic normality). Assume that θ̂k  =  θ̂(X1, X2, . . . , Xk) is an estimate of θ, under 

appropriate regular conditions, set σk  =  √V(θ̂k)  , the following equation holds that when σk  ≈

 √1 Ik(θ)⁄  , then θ̂k − θ σk⁄  
L
→N(0,1) . In the other hand, when σk  =  √1 Ik(θ)⁄  , then θ̂k − θ σk̂⁄

 
L
→N(0,1) [3]. 

Theorem 3 (Covariance). Assume θ̂  be the maximum likelihood estimate of θ . If the continuous 

function of θ  is 𝑔(𝜃) , then the maximum likelihood estimates of 𝑔(𝜃)  is 𝑔(𝜃) . Particularly, when 

𝑔′(𝜃) ≠ 0, 𝑔(𝜃) is remain the maximum likelihood estimate of 𝑔(𝜃) [3]. 

Proof: In order to make 𝑔(𝜃) be monotonous, assuming 𝑔′(𝜃) = 0, then one can address its extreme 

point, because 𝑔(𝜃) is the continuous function of θ. Assuming there exist 𝑛 extreme points, which is 

𝜃1, 𝜃2, 𝜃3, . . . , 𝜃𝑛.  So that 𝑔(θ) is monotonous on [𝜃1, 𝜃2), [𝜃2, 𝜃3), . . . , [𝜃𝑛−1, 𝜃𝑛) , then there exists 

inverse function of g(θ). Let τ =  g(θ), then θ = g−1(τ). According to L(θ) ≤  L(θ̂), there exists 

L[g−1(τ)] = L(θ) ≤ L(θ̂) = L[g−1(τ̂)] (5) 

on [𝜃1, 𝜃2), [𝜃2, 𝜃3), . . . , [𝜃𝑛−1, 𝜃𝑛). So that τ̂ is the maximum likelihood estimate of τ, and 𝑔(𝜃) is also 

the maximum likelihood estimate of g(θ). 

3.  Applications 

3.1.  Annealing furnace online energy efficiency monitoring system 

In modern society, the production of cold-rolled and hot-dip galvanized strips is developing with a rapid 

speed. The strips are heat treated in a hot-dip galvanizing continuous annealing furnace according to 

certain annealing process requirements to achieve the required physical and chemical properties of the 

material [4]. The energy consumption of the annealing furnace accounts for more than 30% of the energy 

consumption of the cold rolling process. Research on the energy efficiency of the annealing furnace will 

help reduce the energy consumption of the cold rolling process and improve the core competitiveness 

of steel companies. This application derived an online monitoring system for continuous furnace energy 

efficiency based on heat balance analysis and maximum likelihood estimation method [5,6].  

 

Figure 1. The overall energy balance system of the annealing furnace online. 

This application establishes an energy balance model for each part based on the annealing furnace 

process and equipment characteristics. Based on the annealing furnace equipment characteristics and 
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online operation conditions, the energy efficiency monitoring and analysis focuses on the Section of jet 

preheating. Section of heating/soaking section and Section of slow cooling/rapid cooling section and 

other parts that have a greater impact on the overall energy consumption. The overall energy balance 

system of the annealing furnace online as shown in the Figure 1. 

In this application, because the energy consumption data of the annealing furnace calculated based 

on online heat balance data samples fluctuates greatly, it is impossible to simply use a single data as the 

optimal value for diagnosis, so a diagnostic model based on the maximum likelihood method is 

established. Analyze the fluctuations of heat balance data samples to determine the current thermal status 

of the annealing furnace. 

Assuming that the sample size is sufficiently large, this paper assumes that the sample follows a 

normal distribution. Suppose the measured value of an indicator is 𝑥𝑘 , which is satisfied normal 

distribution with mean 𝜇𝑘 and variance 𝜎𝑘. It is also assumed that the difference 𝑥𝑘 − 𝜇𝑘 between the 

measured value and the true value follows a normal distribution with mean 0 and variance 𝜎𝑘. So that 

𝑥𝑘~𝑁(𝜇𝑘 , 𝜎𝑘), or 𝑥𝑘 − 𝜇𝑘  ~ 𝑁( 0, 𝜎𝑘). Then the likelihood function is that 

L(𝜇1, 𝜇2, . . . , 𝜇𝑘) =∏
1

√2𝜋𝜎𝑘
2
 

𝑛

𝑘=1
𝑒𝑥𝑝 [−

(𝑥𝑘 − 𝜇𝑘)
2

2𝜎𝑘
2

] . (6) 

Next, assuming the absolute error of 𝑥𝑘 is 𝛿𝑘, and its confidence interval probability is 95%. Then, 

integrate the probability density function to get the mean square error of 𝑥𝑘 as 𝜎𝑘 = 
𝜎𝑘

1.96
; After these 

steps, calibration value can be acquired as 𝑥𝑘̅̅ ̅.  So that when |
𝑥𝑘−𝑥𝑘̅̅̅̅

𝜎𝑘
| > 1.96, the confidence probability 

of 𝑥𝑘 is less than 95%. On the contrary, it can be trusted when the confidence interval is ( 𝑥𝑘̅̅ ̅ − 1.96𝜎𝑘,
𝑥𝑘̅̅ ̅ + 1.96𝜎𝑘). 

The author with the above content can obtain that the diagnostic method outlined in this article 

incorporates the concept of maximum likelihood estimation. It takes the energy efficiency data derived 

from the heat balance model as the subject of testing and utilizes historical vertical furnace energy 

efficiency figures as the benchmark. Furthermore, it also establishes an appropriate confidence 

probability and performs a retrospective analysis to evaluate the efficiency of the data. 

3.2.  Estimating gamma distribution environmental factors 

In different working environments, people may encounter data conversion problems between 

environments. To solve such problems, how to determine the values of different environmental factors 

is the key. In addition to using environmental factors to convert data, this type of problem also relies on 

the conversion principle between life spans in different environments, and the most common of which 

is gamma distribution [7]. 

This model assumes that the probability density function of the two-parameter gamma distribution 

is that 

f(x) = {
λ

k

Γ(k)
yk−1e−λ, y ≥ 0

0                    , y < 0

. (7) 

And this model assumes that 𝑘 is known, and there is no replacement for the environmental factor 𝑢 

under the definite truncation model. Assuming that the product life under two environments is 

𝑌𝑖𝑗~𝛤(𝑘𝑖, 𝜆𝑗), 𝑖 = 1, 2 . 𝑘  and 𝜆  are scale parameters and shape parameters respectively. The failure 

mechanism of the product is the same in two environments, so that when 𝑘1 = 𝑘2 = 𝑘, the gamma 

distribution environmental factor is that [8] 

u =
𝜆2

𝜆1

. (8) 
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Suppose the first 𝑞𝑖  minimum observation values in a random sample with capacity 𝑚𝑖  from the 

gamma distribution are 𝑦𝑖1 ≪ 𝑦𝑖2 ≪ . . .≪ 𝑦𝑖𝑞𝑖, and set up the vector 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝑞𝑖), then the 

likelihood function based on 𝑌𝑖 is that 

𝐿𝑖( 𝑦𝑖  | 𝜆𝑖 ) =
𝑚𝑖!

(𝑚𝑖 − 𝑞𝑖)!
∏ [𝑓(𝑦𝑖𝑗;  𝑘,

𝑞𝑖

𝑗=1
𝜆)]𝐹𝑚𝑖−𝑞𝑖(𝑦𝑖𝑞𝑖;  𝑘, 𝜆𝑖). (9) 

By substituting Eq. (8) into Eq. (9), then 

𝐿𝑖(𝑦𝑖|𝜋𝑖) = 𝐶𝑖𝜆𝑖
𝑘𝑞𝑖𝑒−𝐻𝑖𝜆𝑖 , (10) 

where 𝐶𝑖 =
𝑚!∏ 𝑦𝑖𝑗

𝑘−1𝑞𝑖
𝑗=1

(𝑚𝑖−𝑞𝑖)!(Γ(k))
𝑞𝑖
   and 𝐻𝑖 = ∑ 𝑦𝑖𝑗 + (𝑚𝑖 − 𝑞𝑖)

𝑞𝑖
𝑗=1 𝑦𝑖𝑗 , 𝑖 =  1, 2 . Then the joint likelihood 

function of the test results in the two environments is L = L1L2, with [9] 

𝐿(𝜆1, 𝜆2) =∏  𝐶𝑖𝜆𝑖
𝑘𝑞𝑖𝑒−𝐻𝑖𝜆𝑖

2

𝑖=1
. (11) 

By performing logarithmic operations on both sides of the joint likelihood function simultaneously, 

then 

ln𝐿(𝜆1, 𝜆2) =∑ 𝐶𝑖
2

𝑖=1
+∑ 𝑘𝑞𝑖𝑙𝑛

2

𝑖=1
𝜆𝑖 −∑ 𝐻𝑖𝜆𝑖

2

𝑖=1

(12) 

By taking partial derivatives of 𝜆1 and 𝜆2 respectively, then 

𝜕𝑙𝑛𝐿

𝜕𝜆𝑖
=
𝑘𝑞𝑖
𝜆𝑖
−𝐻𝑖 = 0, 𝑖 = 1,2. (13) 

Therefore, 𝜆1𝐿̂ =
𝑘𝑞1

𝐻1
, 𝜆1𝐿̂ =

𝑘𝑞2

𝐻2
. From these, when 𝑘 is known, the maximum likelihood estimation 

of environmental factors under constant censoring model without replacement 𝑢 is that 

𝑢𝐿̂ =
𝜆2𝐿̂

𝜆1𝐿̂

=
𝐻1𝑞2

𝐻2𝑞1

, (14) 

where 𝐻𝑖 = ∑ 𝑦𝑖𝑗 + (𝑚𝑖 − 𝑞𝑖)
𝑞𝑖
𝑗=1 𝑦𝑖𝑗 , 𝑞𝑖 is censored data, i = 1, 2. 

The author with the above content can obtain that in the above-mentioned constant censoring model 

without replacement, on the premise that the relevant conditions of the environmental factor u (k is 

known) and the likelihood function of the sample have been assumed, the estimated value of the 

parameter u is obtained by using maximum likelihood estimation. In this mathematical model, the basic 

definition of maximum likelihood estimation has been fully and reasonably used, but the relevant 

properties have not been brought into exert. Maximum likelihood estimation greatly improves the 

efficiency and accuracy of determining environmental factors in different environments [10]. 

3.3.  Block-sparse least mean square algorithm 

The echo cancellation algorithm is the core of front-end acoustic signal processing and intelligent voice 

terminal equipment, and is of great significance to improving user intelligibility, auditory experience, 

and quality of life. In order to break through the limitations of fixed numerical settings and actual 

engineering requirements, maximum likelihood estimation algorithms based on robust statistical ideas 

have emerged [11,12]. Based on the idea of robust statistics, Hampel three-segment function is 

introduced to establish a block sparse adaptive filtering algorithm based on maximum likelihood 

estimation. 

Echo cancellation ensures that far-end user A will not hear an echo of his or her own voice when 

talking to near-end speaker B. The system is equipped with an echo cancellation module at near-end B, 

which integrates a control unit, adaptive algorithm, and residual echo suppression function. In addition, 
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in order to enhance the clarity and comfort of speech, the system adds comfort noise to optimize the 

user’s listening experience. The specific principle is shown in Figure 2. The maximum likelihood 

estimation based on the idea of robust statistics replaces the original minimum mean square error 

criterion. This mathematical model establishes a robust block sparse normalized minimum mean square 

algorithm and corrects the cost function to be that [13],  

H(n) = E[φ(e(k))] + λ||ω(k)||2.0, (15) 

where e(k) = d(k) − μT(k)ω(k), d(k) = y(k) + v(k), y(k) = μT(k)ω(k) , and μ(k)  is voice signal 

sent by remote user A, ω (k) is unknown echo path, y(k) is echoe signal, 𝑣(𝑘)  is background noise. 

φ(e(k)) is maximum likelihood estimate to suppress impulses noise. 

Then suppose ϱ, Υ1, Υ2  are the threshold parameters that control the compression amplitude of 

impulse noise. Then define the Hampel three-segment function as follows 

φ(e) =

{
 
 
 
 

 
 
 
 
𝑒2

2
                                                                         , 0 ≤ | 𝑒 | ≤ ϱ       

ϱ | e | −
ϱ2

2
                                                         ,   ϱ ≤ | 𝑒 | ≤ Υ1  

𝜚
2
 ( Υ1 + Υ2 ) − 

ϱ2

2
+
𝜚
2
 
( | 𝑒 | − Υ2)

2

Υ1 − Υ2
     ,Υ1 ≤ | 𝑒 | ≤ Υ2 

𝜚
2
 ( Υ1 + Υ2 ) − 

ϱ2

2
                                        ,   Υ1 ≤ | 𝑒 |          

 . (16) 

Through the negative gradient steepest descent method, the filter weight vector ω of the Eq. (15) is 

derived, and the new weight coefficient update formula is obtained as follows 

ω(k+ 1) = ω(k) +
κ
𝜕𝜑(𝑒(𝑘)
𝜕𝜔(𝑘)

e(k)μ(k)

μ(k)μT(k) + ϕ
+ ξf(ω(k)) + Λf(ω(k)), (17)

 

where f(ω) = [f1(ω), f2(ω), . . . , fn(ω)]
T, fi(ω) ≜  2𝛽

2𝜛𝑖  − 
2𝛽𝜛𝑖

|| 𝜔 ( ⌈𝑑/𝑐⌉] ||
  or zero. β  is a constant, κ  is 

the step parameter that adjusts the balance between steady-state error and convergence speed. ϕ is a 

positive constant that prevents division by zero in normalization processing, and Λ = κλ 2⁄ .  

 

Figure 2. Acoustic echo system model schematic diagram 

The author with the above content can obtain that the output error is small in order to make the cost 

function of the adaptive echo algorithm have a low-order norm. When the output error is large, the 
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derivative of the cost function approaches 0. Thus, a nonlinear bounded function Hampel three-segment 

function is introduced. The segment function is the cost function, and combined with the idea of 

maximum likelihood estimation, the required weight coefficient update formula is obtained by 

derivation. This mathematical model makes full use of the core idea of maximum likelihood estimation 

and involves related properties. 

4.  Conclusion 

Throughout the paper, the author explores three mathematical models, which are parameter estimation 

of the annealing furnace efficiency system, estimation of gamma environmental factors, and function 

likelihood improved by adaptive echo cancellation algorithm. It is found that the reason why maximum 

likelihood estimation is widely used is because of its unique calculation cogitation, which is finding a 

special value by taking logarithms and derivation. This special value also has the core characteristics of 

the model, so that it is the most appropriate estimate. As for the relevant properties of maximum 

likelihood estimation, it is not used very frequently and may be only used under specific conditions. 

What is more, it is the most widespread to combine the idea of maximum likelihood estimation to build 

mathematical models or algorithm functions. As the parameter estimation of the annealing furnace 

efficiency, the idea of maximum likelihood estimation and the method of posterior probability are 

combined to find the estimated value of the parameter. Meanwhile, in the adaptive echo cancellation 

algorithm, the ideas of robust statistics and maximum likelihood estimation are combined, the Hampel 

three-segment function is introduced, and a new filtering algorithm is established to meet the needs of 

the model. 
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