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Abstract. This research delves into an analysis of lung, bronchus, and trachea cancer rates in the 

United States across genders. Employing the data spanning seven decades (1950-2020) sourced 

from the Our World in Data website, the study leverages time series modeling techniques, 

ARIMA and ETS models. The ARIMA methodology initiates with an assessment of data 

stationarity, followed by differencing procedures to transform the dataset into a non-stationary 

data. Subsequently, Autocorrelation Function (ACF) and Partial Autocorrelation Function 

(PACF) plots are examined. Last, the ARIMA model is fitted to dissect the mortality rates among 

males and females. Simultaneously, the ETS model is directly applied to the mortality data of 

both genders. The components of the ETS model and the check residuals for ETS are delineated. 

The outcomes reveal the trends: both genders exhibit a discernible decline in lung, bronchus, and 

trachea cancer death rates over the period. Despite this downward trajectory, the persistent 

mortality rates underscore the gravity of the issue. This paper advocates for a heightened focus 

on lung-related cancers. Understanding and addressing these mortality rates are imperative. 

Keywords: Lung, bronchus and trachea cancer death rate, ETS model, ARIMA model, Time 

series 

1.  Introduction 

Lung, bronchus and trachea cancers collectively pose a substantial public health challenge, with a 

staggering number of lives lost annually. In the United States, the year 2022 witnessed a daunting surge 

in cancer cases, with 1,918,030 new diagnoses reported. A sobering projection indicates that 609,360 

individuals are anticipated to succumb to cancer, reflecting a profound societal impact, characterized by 

an alarming average of approximately 350 daily lung cancer-related fatalities, which is the leading cause 

of cancer deaths [1]. Evidently, lung cancer stands as the foremost cause of cancer-related deaths, 

emphasizing the urgent need for an intensified focus on prevention, early detection, and innovative 

treatment strategies. Lung cancer management has witnessed a shift, marked by significant strides in 

early detection methods and treatment modalities. These advancements, spanning recent decades, 

underscore a global commitment to combating this formidable disease [2]. Notably, the multifaceted 

nature of lung cancer necessitates a comprehensive understanding of its etiological factors and the 

implementation of diverse therapeutic interventions. Conventional treatments, including chemotherapy, 

surgical resection, and radiation therapy, have been instrumental in addressing lung cancer [3]. Crucially, 

the intricate tapestry of lung cancer etiology unravels various causative strands, notably encompassing 
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smoking, lifestyle factors, genetic predisposition, dietary habits, occupational exposures, and ambient 

air pollution [4].  

The trajectory of lung cancer, once a rarity 150 years ago, has witnessed a remarkable transformation, 

evolving into a prominent public health challenge over the ensuing decades. Several historical events, 

including World War I, the pervasive tobacco epidemic, and the rapid industrialization of societies, have 

collectively contributed to the substantial rise in the prevalence and mortality rates of lung cancer [5]. 

Understanding the evolution of this malignancy necessitates a meticulous analysis of its mortality rates 

across temporal epochs. Previous investigations have shed light on the emergence of lung cancer as a 

20th-century epidemic in the United States, reaching its zenith towards the century’s closure. Fortunately, 

subsequent years have witnessed a reversal of this trend, marking a significant decline in the lung cancer 

epidemic, a trend that persists to the present day [6]. This dynamic landscape of lung cancer 

epidemiology has been a focal point of extensive research endeavors, particularly concerning future 

trends. Scholars and researchers have dedicated their efforts to forecasting the trajectory of lung cancer, 

thereby facilitating the development of innovative technologies aimed at early detection and, 

consequently, enhanced prevention strategies. Numerous studies have meticulously calculated and 

analyzed the incidence, mortality, and prevalence rates of lung cancer across various countries. These 

analyses have not only gauged the impact of lung cancer on populations but have also delved into the 

intricacies of the incidence rate formula, contributing valuable insights to the broader understanding of 

the disease’s epidemiological implications [7].  

The analysis of lung cancer mortality rates serves as a pivotal endeavor, essential for enhancing the 

understanding, control, and prediction of this pervasive and deadly disease. Notably, advancements in 

screening methods have played a significant role in mortality reduction, exemplified by low-dose 

computed tomography (LDCT) screening, which has demonstrated the potential to decrease lung cancer 

mortality by up to 20% [8]. However, the limitations associated with LDCT, such as high false positive 

rates and associated risks, have propelled the exploration of alternative, non-invasive screening tools. 

Among these, long noncoding RNAs (lncRNAs) have emerged as promising candidates, offering 

accessibility and affordability in blood analysis, thus providing a more viable avenue for early detection 

and monitoring of lung cancer [9]. Moreover, this study builds upon prior research that categorized 

individuals into distinct groups based on smoking status, namely smokers, past smokers, and current 

smokers. Utilizing multivariate regression analysis and considering multiple risk factors, these datasets 

were meticulously scrutinized. In a departure from conventional approaches, this study delves into the 

striking disparity observed in lung cancer mortality rates between genders. Recognizing the significance 

of this gender-based difference, the analysis focuses specifically on delineating the mortality rates 

among men and women, thereby offering a nuanced perspective on the complexities of lung cancer 

epidemiology [10]. Furthermore, the endeavor to predict future trends in lung cancer mortality has been 

a subject of extensive research. However, limitations in the available annual data sample size restrict the 

scope of meaningful long-term predictions. To address this, this paper employs the R language, 

facilitating a robust analysis of the data. This method not only enables visualization of the data but also 

provides clear and unambiguous graphical representations, enhancing the precision of lung cancer 

mortality rate analysis. By leveraging computational tools, this research aims to shed light on the 

multifaceted dynamics of lung cancer mortality rates so that can pave the way for informed strategies 

and interventions. 

2.  Methods 

2.1.  Data source 

The data presented in this literature pertains to age-standardized mortality rates for males and females 

in the US (per 100,000 people) due to lung, bronchus, and trachea cancer. The variable time span covers 

the years 1950 to 2020. The data was published by the World Health Organization, and the source of the 

publication date is the WHO Mortality Database. This paper accessed the data from the Our World in 

Data website, retrieved on May 16, 2022. 
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2.2.  Method introduction 

In this paper, the analytical approach involves the utilization of R to conduct a comprehensive analysis 

of the lung, bronchus, and trachea cancer death rates in the United States, specifically focusing on both 

male and female populations. Two distinct analytical models are employed in this investigation: the 

AutoRegressive Integrated Moving Average (ARIMA) model and the Exponential Smoothing State 

Space (ETS) model. These models are chosen for their efficacy in time series analysis, allowing for the 

exploration of temporal patterns and trends within the mortality data. The segmentation of the analysis 

into male and female death rates is a strategic methodological choice, driven by the noticeable disparity 

observed in the mortality rates between the genders. This demarcation enables a nuanced examination 

of the unique trajectories experienced by males and females in the context of lung-related cancers. 

3.  Results and discussion 

3.1.  ARIMA model 

In this section, this paper employed the ARIMA model to meticulously dissect the dataset. Initially, the 

original data was visually represented through histograms, providing insightful glimpses into the 

temporal patterns of lung, bronchus, and trachea cancer death rates among males and females in the 

United States. For male lung-related cancer mortality rates, a discernible upward trajectory was evident 

from 1950 to 1990, followed by a significant downward trend from 1990 to 2020, indicating notable 

fluctuations over the decades. This is clear that the data are non-stationary, underscoring the necessity 

for further analytical treatment (Figure 1). Conversely, the histogram depicting female lung, bronchus, 

and trachea cancer death rates revealed a nuanced pattern. Between 1950 and 1960, there was a gradual, 

albeit slow, increase in mortality rates. Subsequently, from 1960 to 2000, a substantial upward trend was 

observed. Post-2000, a distinct downward trajectory emerged (Figure 2). These intricate trends 

emphasize the complexity of gender-specific patterns in lung-related cancer mortality rates. Subsequent 

part will delve into the results of the ARIMA analysis, providing deeper insights into the evolving trends 

that have shaped the landscape of lung-related cancer mortality rates among males and females in the 

United States. 

 

Figure 1. Male’s original data plot. 
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Figure 2. Female’s original data plot. 

After the visual examination of the data, it became evident that the data were non-stationary, thus 

necessitating appropriate preprocessing methods for rigorous analysis. To address this, the dataset was 

subjected to differencing, resulting in the creation of two distinct data sets. This differentiating process 

ultimately yielded two stationary datasets for male and female lung, bronchus, and trachea cancer death 

rates (Figure 3 and 4). Meanwhile, through the application of the Augmented Dickey-Fuller test (ADF), 

the computed p-values for both male and female datasets were observed to be 0.01, indicating two 

stationary datasets and a high level of statistical significance. These results affirm the successful 

transformation of the datasets into stationary forms, laying the groundwork for subsequent in-depth 

analyses and ensuring the robustness of the findings presented in this study. 

 

Figure 3. Male’s plot after differencing. 
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Figure 4. Female’s plot after differencing. 

In the subsequent phase of the analysis, the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plots were meticulously examined for both male and female death 

rates. These analytical techniques enabling the identification of significant correlations and 

dependencies within the data. Specifically, the histograms revealed that the male and female death rates 

exhibited non-white noise characteristics, as evidenced by the lags extending beyond the critical region 

(Figure 5, 6, 7 and 8). This notable deviation from white noise patterns underscores the presence of 

discernible temporal structures within the datasets, prompting a deeper exploration. 

 

Figure 5. ACF for Male. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241024

42



 

Figure 6. ACF for Female. 

 

Figure 7. PACF for Male. 

 

Figure 8. PACF for Female. 
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In the conclusive phase of the analysis, the AutoRegressive Integrated Moving Average (ARIMA) 

model was fitted to the preprocessed datasets (Table 1 and 2). To gauge the appropriateness of the models, 

two key metrics, namely the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC), were employed. AIC serves as a measure of the model’s goodness of fit, striking a balance 

between data fit and the avoidance of overfitting. Calculated using the formula AIC = 2k - 2ln(L) (where 

k represents the number of parameters and L is the likelihood function), models with lower AIC values 

are favored as they offer superior data fit while avoiding unnecessary complexity. Similarly, the 

Bayesian Information Criterion (BIC) operates in a similar vein. The BIC formula, BIC = k * ln(n) - 2 

* ln(L) (where k is the number of parameters, n represents the number of samples, and L is the likelihood 

function). The value of BIC should be as small as possible and encouraging the selection of models that 

explain the data’s statistical characteristics.  

Upon comparison of the AIC and BIC values for both male (AIC=125.83, AICc=126.45, BIC=134.76) 

and female (AIC=15.59, AICc=15.96, BIC=22.29), a discernible trend emerged. The AIC and BIC 

values derived from the female dataset were notably smaller than their counterparts from the male 

dataset. This discrepancy underscores the superior fit and explanatory power of the ARIMA models 

developed for the female dataset, indicative of a more precise representation of the underlying patterns. 

Table 1. Fit ARIMA model for male’s data. 

 ma1 ma2  

Coefficient -0.9703 0.2878 

S.E. 0.115 0.1207 

Table 2. Fit ARIMA model for Female’s data. 

 ar1 ar2 

Coefficient -0.8347 -0.2378 

S.E. 0.1157 0.1155 

After applying the ARIMA models, residual checks were conducted for both male and female 

datasets to ascertain their adherence to the white noise assumption (Figure 9 and 10). 

 

Figure 9. Residuals from ARIMA(0,0,2) for male’s data. 
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Figure 10. Residuals from ARIMA(2,0,0) for female’s data. 

For the male dataset, the observation of a large p-value (larger than 0.05) (Table 3), in conjunction 

with all lags fell within the critical region of the ACF histogram, unequivocally confirmed the white 

noise nature of the residuals. This comprehensive analysis not only affirmed the adequacy of the model 

fit but also underscored its excellent goodness of fit, as meticulously recorded. Similarly, in the case of 

the female dataset, the p-value exceeding 0.05 (Table 4), coupled with the ACF histogram displaying 

nearly all lags within the critical region and the residuals histogram is normally distributed, corroborated 

the white noise characteristics of the residuals. These rigorous evaluations collectively affirmed the 

exceptional goodness of fit for the female dataset. 

Table 3. Ljung-Box test for Male. 

Element Data 

Q* 7.4637 

df 8 

p-value 0.4875 

Model df 2 

Total lags used 10 

Table 4. Ljung-Box test for Female. 

Element Data 

Q* 11.647 

df 8 

p-value 0.1677 

Model df 2 

Total lags used 10 

3.2.  ETS model 

In this section, the Exponential Smoothing State Space (ETS) model was employed to analyze both male 

and female death rates. 
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Firstly, focus on male death rate. Notably, the analysis of model parameters revealed that the 

parameter α closed to 1. The large level smoothing value (parameter α) means the recent observations 

have larger weight for forecasting. Contrarily, the parameter β not closed to 1. The small trend smoothing 

value (parameter β) means the forecast focuses on longer-term trend. Further scrutiny was directed 

towards the AIC and BIC values. The observed magnitudes of AIC and BIC are quite big and the model’s 

Mean Squared Error (MSE) value has a very small value (Table 5). This diminutive MSE value signifies 

a minimal forecasting error, underscoring the remarkable precision of the model. This underscores the 

model’s accuracy and efficacy, validating the robustness of the analytical approach and affirming the 

reliability of the outcomes derived. 

Table 5. Fitting ETS for Male. 

Element Data 

Smoothing parameters:  

Alpha 0.6217 

beta 0.3542 

Initial states:  

I 17.9506 

b 1.4864 

sigma 0.0119 

AIC 206.9852 

AICc 207.9688 

BIC 218.0087 

Training set error measures:  

ME -0.1339242 

RMSE 0.5804296 

MAE 0.4155108 

MPE -0.2366083 

MAPE 0.8693535 

MASE 0.334803 

ACF1 0.02938643 

In the subsequent phase, this paper will analyze the components of ETS. From the histogram 

“Observed” represents the raw time series data which is the actual observations this paper needs to 

analyze and predict. “Level” represents the long-term average or trend in the time series data. It is usually 

an estimate of the trend component, which represents the direction of the long-term trend in the data. 

“Slope” is the magnitude of the change in the trend, i.e., whether the data is going up or down and at 

what rate. It represents the rate or rate of change of the long-term trend in the time series data. Upon 

analysis of the results, discernible patterns emerged from the histograms of both the Observed and Level 

components. An initial upward trend was observable, followed by a notable downward trajectory post-

1990. Moreover, the Slope histogram depicted an overarching downward trend (Figure 11). 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241024

46



 

Figure 11. Components plot for male’s data. 

In this part of the analysis, this paper turns the attention to the examination of residuals from the ETS 

model. This pivotal step aims to assess the adherence of residuals to the white noise assumption, 

providing critical insights into the model’s goodness of fit. The p-value notably exceeds 0.05, attesting 

to the model’s exceptional goodness of fit. Furthermore, a comprehensive analysis of the ACF shows a 

pattern wherein all spikes are within the critical interval. This spatial distribution affirms the absence of 

discernible correlations within the residuals, further bolstering the argument for the white noise nature 

of the residuals. In addition to the ACF examination, the histogram of residuals exhibits a distribution 

that adheres closely to the contours of a normal distribution. This adherence further fortifies the assertion 

that the residuals can be characterized as white noise (Figure 12). 

 

Figure 12. Checking the residuals for male’s data. 

Secondly, focus on female death rate. In this part, this paper fitting the ETS model for female death 

rate. It shows the parameter α exhibited a close approximation to 1. Subsequently, an evaluation of the 

AIC and BIC values was performed. The observed diminutive values of AIC and BIC suggest a 

parsimonious model, indicative of an optimal balance between model complexity and explanatory power. 

Moreover, an assessment of the MSE revealed a diminutive value, emphasizing the model’s efficacy in 

minimizing forecasting errors. This diminutive MSE value attests to the model’s precision and accuracy 

in predicting the female death rate (Table 6). 
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Table 6. Fitting ETS for Female. 

Element Data 

Smoothing parameters:  

Alpha 0.6824 

beta 0.5044 

Initial states:  

I 4.3013 

b 0.0431 

sigma 0.2747 

AIC 114.4743 

AICc 115.4579 

BIC 125.4978 

Training set error measures:  

ME -0.03231171 

RMSE 0.2664184 

MAE 0.2004075 

MPE 0.1207274 

MAPE 1.343544 

MASE 0.376942 

ACF1 -0.0425635 

In the subsequent phase of the analysis, this paper direct the attention to the intricate components and 

residual characteristics derived from the ETS model. From the examination of ETS components, 

distinctive patterns emerge within the observed and level histograms. Initially, both histograms reveal 

an ascending trend until the year 2000, followed by a gradual descent thereafter. Similarly, scrutiny of 

the slope histogram unveils an upward trajectory from 1950 to 1980, succeeded by a subdued trend post-

1980. These observations illuminate the dynamic interplay between long-term trends and fluctuations 

within the dataset. Then turning the attention to the check residuals. The p-value is greater than 0.05, 

attesting to the model’s outstanding goodness of fit. Additionally, the analysis of the ACF reveals that 

nearly all spikes fall within the critical interval. Further fortifying this assertion is the observation that 

the histogram of residuals adheres closely to a normal distribution, a characteristic indicative of white 

noise (Figure 13). In summation, these rigorous evaluations affirm the white noise nature of the residuals, 

affirming the model’s precision and its aptness in capturing the inherent patterns within the female death 

rate data. 

 

Figure 13. Checking the residuals for female’s data. 
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4.  Conclusion 

In conclusion, through the meticulous application of ETS and ARIMA models to the dataset, the 

discernment of white noise in the final results substantiates the efficacy of the models in capturing the 

inherent complexities of lung cancer mortality rates. Despite the stark gender disparity in lung cancer 

mortality, with men exhibiting significantly higher rates, the rising trend in women’s mortality rates 

necessitates sustained attention and proactive measures. The pervasive impact of lung cancer, attested 

by its high mortality rates, underscores its status as a global health challenge. The comprehensive 

analysis of annual data facilitates a nuanced understanding of the dynamic fluctuations in lung cancer 

trends. Leveraging historical data for predictive analyses not only aids in comprehending yearly 

variations but also empowers proactive measures for mortality rate control. In the ongoing quest for 

improved public health, sustained dedication to anti-smoking initiatives, robust air quality management, 

innovative screening and treatment programs and advancements in medical interventions collectively 

pave the way toward the eventual control of lung cancer mortality rates. It is an earnest hope that these 

multifaceted efforts will yield positive outcomes, contributing to the overarching goal of effectively 

curbing the impact of lung, bronchus and trachea cancers on global health. 
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