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Abstract. Linear algebra is an important mathematical method used to solve real-life problems 

such as optimization. This paper chose the Travelling Salesman Problem as the topic. TSP 

Problem had a lot of different methods and algorithms. In this paper, the principle of each 

method is explained, and the comparison with the test data is shown at the end of the paper. 

Matlab was used to support the research. The source codes of each method were uploaded to 

Github. According to the test data, the branch-and-bound method performed the best because it 

takes the least time to run and can handle the most data. TSP Problem is widely used in real life, 

such as transportation. The faster the code, the better the performance of the program.   

Keywords: Travelling Salesman Problem, comparison, source code  

1.  Introduction 

The Traveling Salesman Problem (TSP) is to determine the shortest path that passes through each 

node once and ends at the starting node. TSP has important applications in fields such as logistics, 

transportation, and circuit board design. TSP can be utilized to optimize the route taken by a delivery 

company to minimize time and cost, or to minimize the length of the wires connecting different 

components on a circuit board. The Traveling Salesman Problem (TSP) is categorized as “NP-hard.” 

This means that there is no known efficient algorithm that can solve the problem for all inputs. Karl 

Menger, a mathematician, and economist first came up with the idea of TSP, and then he published his 

book, “Ergebnisse eines Mathematischen Kolloquiums” about it [1]. The TSP was eventually made 

popular by the scholars studying it in the 1940s. 

There are different algorithms to solve TSP, including exact and inexact ones. For example, as 

suggested by Damon Cook, “Memetic algorithms” and “Heuristic approaches” would give an 

approximate solution [2]. heuristic approaches may be able to find near-optimal solutions to a problem 

quickly, without necessarily guaranteeing finding the optimal solution. The choice of the algorithm 

used depends on the size and complexity of the problem, as well as the desired solution quality and 

computational efficiency. 
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Sometimes, linear programming (LP) can also be used to find the exact optimal solution for TSP if 

the computation is small. The problem needs to be converted into a mathematical model with objective 

functions and constraints. But for some TSPs with large inputs, it is not always feasible to put it in the 

standard form of LP and get the optimal solution. As a result, developing efficient algorithms for 

solving TSP is an ongoing and active area of research. 

In this paper, we will present different formulations and evaluate and recommend some methods 

that require computer-aided computation. 

2.  Formulations 

In this section, we will present seven different methods for solving the TSP problem. The section is 

divided into two parts. One of these two parts is the introduction and examples of the formulations that 

do not require computer-aided computation. The second part is about the formulations that require 

computer-aided computation. 

2.1.  Formulation Without Coding 

2.1.1.  Held-Karp bound. The Held-Karp bound is a dynamic programming algorithm for TSP. It is 

relatively more efficient to provide an accountable lower bound for the TSP problem when the input is 

large. The large-scale TSP with up to 30,000 cities is discussed by Arnold F [3]. Held-Karp algorithm 

creates a two-dimensional table with each axis corresponding to subsets of cities. At each stage of the 

algorithm, it uses previously computed entries in the table to calculate the current entry, based on the 

cost of adding a new city to the cycle at the lowest cost. This involves calculating the cost of the path 

that includes all cities in the current subset except for the last one, and then adding the distance that 

connects the last city to the current one. 

2.1.2.  The Held-Karp lower bound algorithm and how it is used to solve TSP. The Held-Karp 

algorithm is a dynamic programming approach used to solve the TSP. The algorithm works by 

breaking down the problem into smaller subproblems and finding optimal solutions one by one to 

those subproblems. Assuming there are n cities, and we number the cities from 1 to n. In the context of 

the algorithm, the cities form a set, and the starting point is chosen as city 1. 

To implement the algorithm, we create a two-column graph A, which is used to store the minimum 

path lengths between different subsets of the cities. One column represents the cost to travel through 

any subsets of the city set that do not contain city 1, and the other column represents the last city we 

traveled to. Saying that we start at the subset that only contains one city j (not contain city 1), we 

simply get the cost that we travel from city 1 to j. 

If the table can be completed, we only need to find the subset S that contains all cities except city 1. 

There should be n-1 values here, representing the shortest paths from city 1 to city j by passing 

through all cities once. Then we just need to add the distance from j to 1 to these values to obtain the 

lengths of circuit paths. We can then select the minimum value from them. 

2.2.  A survey on the efficiency of Held-Karp lower bound. 

The Held-Karp algorithm has a time complexity of O (𝑛2 ∗ 2𝑛), which is an improvement over the 

brute force approach with a time complexity of O(n!), where n is the number of cities in the TSP. The 

algorithm is widely used in the fields of computer science and operations research. 

Researchers have proposed various modifications and heuristics to improve the algorithm’s 

performance, such as pruning techniques to reduce the search space and parallelization to take 

advantage of modern computing architectures. In D. S. Johnson’s study, their group used iterative 

Lagrangean relaxation techniques to improve the HK bound [4]. They proved that it is a feasible 

method and as the number of cities went up to 3000, the HK bound has the . 00001 gap under 

Topology and Planar. AThe95% confidence interval of the HK bound tends to be approximately 
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. 7124 ± .0002.The study by Pascal Benchimol also considered iterative Lagrangean relaxation and 

constraint programming to improve the HK bound [5,6].  

3.  Graph Theory 

In mathematics, Graph Theory is the study of graphs, which are mathematical structures used to model 

pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or 

points) which are connected by edges (also called links or lines). A distinction is made between 

undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link 

two vertices asymmetrically. 

r0.25  

 

Figure 1. Basic Definitions of Graph Theory 

Graphs are one of the principal objects of study in discrete mathematics. 

Figure 1 shows the basic definition of Graph Theory. In Graph Theory, we call those edges that 

have clear direction Direct Edges, and we call those edges that have no clear direction Indirect Edges. 

 

Figure 2. Different Kinds of Vertexes in Graph Theory 

Also, there is another important definition for the Graph Theory. For vertexes, we can divide them 

into different kinds of vertexes depending on how many edges are connected with the vertexes. Figure 

2 shows four different kinds of vertex. If the vertex is connected by zero edges, we can call it Degree 

Zero. If it is connected by one edge, we can call it Degree One. Then and so on. 

In Graph Theory, the most important thing is that when people are solving TSP problems, people 

need to build up a circuit which means they need to find a path that can return to the starting point 

after pathing all the vertexes. After finding all the circuits, we can find out the optimal circuit for TSP 

problems which means passing all the vertexes with the least cost. Now, I will give out some specific 

ways to solve TSP problems by using the Graph Theory. 

We can first solve the TSP problem by using the Euler Path and Euler Circuit in graph Theory. To 

create a Euler path, we need to go through every edge once without repeating, and to create an Euler 

Circuit, we need to make the Euler Path back to the starting point. However, there is a condition for us 

to apply this way to solve the TSP problem, we need to make sure that all vertexes have even number 
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degrees. Because there must be some cases in real life where we can find out even edges are connected 

to the vertex, we can use Eulerization to make sure all vertexes have an even number of degrees. 

 

Figure 3. A Sample Situation 

In Figure 3, we can find out that 8 vertexes have not had an even number of degrees now, we can 

just connect those points to make sure that they have an even number of degrees. This is called 

Eulerization. 

However, though we can use this way to find different circuits in a TSP problem, it is hard for us to 

find the optimal answer. 

Then, the second way to solve the TSP problem by Graph Theory is to build up a Hamiltonian 

Circuit which means we need to build up a circuit that visits every vertex once without repeating and 

not returning to the starting point. 

For example, if we want to solve the TSP problem in this graph by using the Hamiltonian Circuit, 

we can find three circuits in total which are 

 

Figure 4. A Case of TSP Problem 

Figure 4 shows a Special Case of a TSP Problem with 4 Vertexes. 

1. ABCDA: /(4+13+8+1=26/) 

2. ABDCA: /(4+9+8+2=23/) (optimal) 

3. ACBDA: /(2+13+9+1=25/)  

So, it is clear to see that the second circuit is the optimal answer. However, this way, if we assume 

that the total vertex number is N then, we will have 
(𝑁−1)!

2
 circuits, which means in real life, if we want 

to solve a TSP problem with 20 cities in a country, then the total unique circuits we will have is 

60822550204416000 which is too large for even computer to calculate. 

So, overall, though this way can find out the optimal answer, it is not an efficient way. 

The third way to solve the TSP problem by using Graph Theory is the Neighbor Algorithm, for this 

way to solve the TSP problem, there are two steps in total. Firstly, we need to choose a starting point, 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/28/20230393

106



then we need to choose the least-cost edge every time. Finally, we need to repeat this process to find 

the answer. 

 

Figure 5. A Case of TSP Problem 

Figure 5 shows a Special Case of a TSP Problem with 4 Vertexes 

However, though this way can easily solve the TSP problem quickly, we can hardly find the most 

optimal solution. Also, we can use the same diagram to explain this. As we know, for this case, the 

optimal solution is the route ABDCA, but if we use the Neighbor Algorithm to solve this TSP problem 

and choose vertex A as a starting point, we will get ACDA finally which is not an Euler circuit. So, 

this is the problem for this way to solve the TSP problem. 

Lastly, there is both an optimal and efficient way to solve the TSP problem is Kruskal’s Algorithm 

which can also be called Spaning tree. We can adapt this way to real cases by just connecting all the 

cheapest edges and we can get a path in the shape of a tree, though it is not a tree, it doesn’t matter. 

 

Figure 6. Another Case of TSP Problem 

As Figure 6 shows, by using a Spaning Tree to solve a TSP problem, we only need to connect AE, 

AB, AC, and DC, then we can get an optimal answer efficiently. However, the only problem is that we 

need to go through AC twice.  

Now, I am going to introduce a real-world case—-the Chinese Postman Problem. In graph theory, a 

branch of mathematics and computer science, Guan’s route problem, the Chinese postman problem, 

postman tour, or route inspection problem is to find the shortest closed path or circuit that visits every 

edge of a (connected) undirected graph. When the graph has an Eulerian circuit (a closed walk that 
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covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to 

find the smallest number of graph edges to duplicate (or the subset of edges with the minimum 

possible total weight) so that the resulting multigraph does have an Eulerian circuit. It can be solved in 

polynomial time. 

 

Figure 7. A Real Case with Map 

3.1.  A real-world case—Chinese Postman Problem 

As you can see in Figure 7, this is a part of the map of Shenzhen China, in this case, a postman needs 

to send a post to 8 different places. To solve this problem, firstly, we need to convert the map into a 

Graph as the diagram shows, then we can just use the Spanning Tree. We just need to connect all the 

least cost edges and we can get the optimal answer efficiently. 

4.  Formulation With Coding 

This part is about how to solve the TSP problem by using the program. The computer can use a special 

program to solve a difficult task, so many complicated calculations can be done by the computer. All 

coding in this section is done using MATLAB. In this part, it is assumed that the problem TSP is a 

Symmetric Traveling Salesman Problem. 

4.1.  Symmetric Traveling Salesman Problem 

The symmetric traveling salesman problem (TSP) is the problem of finding the shortest Hamiltonian 

cycle (or tour) in a weighted finite undirected graph without loops.  

4.2.  Canonical Form 

To solve a realistic problem on the computer, the abstract realistic problem must be converted into a 

mathematical form, such as the canonical form. 

In the case of the TSP problem, the problem is defined o a grah 𝐷 = (𝑁, 𝐴), which 𝑁 is the number 

of the nodes, and 𝐴 is set of the indexes of the nodes. The distance between node 𝑖 and node 𝑗 is 

defined as 𝑎𝑟𝑐(𝑖, 𝑗) for ∀(𝑖, 𝑗) ∈ 𝐴, and 𝑎𝑟𝑐(𝑖, 𝑗) is equal to 𝑎𝑟𝑐(𝑗, 𝑖) due to the symmetric condition. 

According to the basic definition of TSP, the objective function is used to determine the distance of 

the shortest path that passes through each node, such as 

𝑚𝑖𝑛∑𝑑𝑖,𝑗 ∗ 𝑋𝑖,𝑗 (1) 

𝑋𝑖,𝑗 is a binary value that can take only two values: 1 and 2. If 𝑋𝑖,𝑗 is equal to 1, 𝑎𝑟𝑐(𝑖, 𝑗) is selected, 

and the distance of 𝑋𝑖,𝑗 is computed to the optimal solution. Otherwise, 𝑎𝑟𝑐(𝑖, 𝑗) is not included in the 
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optimal solution, and 𝑋𝑖,𝑗 is not calculated into the optimal the objective function [equation1] is the 

sum of the product of 𝑑𝑖,𝑗 and 𝑋𝑖,𝑗. 

According to the basic definition of TSP, each node must be traversed and can be traversed only 

once. Consequently, there is only one arc entering a node and only one arc leaving a node. In addition, 

the total number of arcs included in the optimal solution is equal to the total number of nodes. These 

three conditions can form a set of constraints. 

∑𝑋𝑖,𝑗 = 𝑛 (2) 

∑𝑋𝑖,𝑘 = 1, ∀𝑖 ∈ 𝑉, 𝑘 ≠ 𝑖 (3) 

∑𝑋𝑘,𝑗 = 1, ∀𝑗 ∈ 𝑉, 𝑘 ≠ 𝑗 (4) 

𝑋𝑖,𝑖 = 0, ∀𝑖 ∈ 𝑉 (5) 

1. The constraint (2) set the number of 𝑎𝑟𝑐(𝑖, 𝑗).  
2. The constraint (3) limit the number of the arc leaving the each of the nodes. 

3. The constraint (4) limit the number of the arc entering the each of the nodes.  

4. The constraint (5) set the value of 𝑋𝑖,𝑖 to be zero.  

Therefore, the canonical form can be obtained by combining the constraints and the objective 

together. 

𝑚𝑖𝑛∑𝑑𝑖,𝑗 ∗ 𝑋𝑖,𝑗 (1) 

∑𝑋𝑖,𝑗 = 𝑛 (2) 

∑𝑋𝑖,𝑘 = 1, ∀𝑖 ∈ 𝑉, 𝑘 ≠ 𝑖 (3) 

∑𝑋𝑘,𝑗 = 1, ∀𝑗 ∈ 𝑉, 𝑘 ≠ 𝑗 (4) 

𝑋𝑖,𝑖 = 0, ∀𝑖 ∈ 𝑉 (5) 

4.3.  DFJ Formulation 

The Danzig-Fullerton-Johnson formulation (also known as the DFJ model) is a widely used 

mathematical model for freight transportation. It was developed by Bernard Danzig, Ralph W. 

Fullerton, and Marvin L. Johnson in the mid-1960s, and has since been refined and adapted by many 

other researchers. 

The DFJ model is based on linear programming, which is a method for optimizing a mathematical 

model subject to constraints. The model considers a range of factors that affect the movement of goods, 

including transportation costs, production costs, inventory costs, and demand for goods. 

The DFJ model is particularly useful for optimizing the movement of goods over complex 

transportation networks, such as those involving multiple modes of transportation (e.g., truck, rail, and 

ship) or multiple origins and destinations. By modeling the transportation system as a set of 

interdependent flows and constraints, the DFJ model can help decision-makers optimize freight 

transportation and logistics in a cost-effective and efficient manner. 

DFJ is a relatively primitive approach to integer linear programming (LP) formulation. It has 2𝑛 +
2𝑛 − 2 constraints, it is evident that due to limitations on ordinary computers’ hash rate, normal 

computer configuration cannot compute the great number of vertices. Consequently, this restricts the 

performance of DFJ formulation to find the solution for a great number of vertices. Thus, DFJ 

formulation is prone to having sub-tour issues. 

∑∑𝑦𝑖,𝑗 ≤ |𝑄| − 1    𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄    𝑄 ⊂ 1,2, … , 𝑛    2 < |𝑄| ≤ 𝑛 − 1 (6) 

The fundamental of DFJ formulation (The code can be found in the 

“https://github.com/vdggtw/Travelling-Salesman-Problem) is simply examining the visited nodes and 

identifying the weight of the distance between two nodes.  
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1. 𝑌𝑖,𝑗 ∈ 0,1 represents for nodes already visited  

2. There must be greater than two nodes to have a tour  

3. The number of visited nodes must not exceed the number of graphs |𝑄| − 1 

4.4.  MTZ Formulation 

MTZ formulation (The code can be found in the “https://github.com/vdggtw/Travelling-Salesman-

Problem) was proposed by Miller, Tucker, Zemlin. A variable that belongs to integers 𝑡𝑖  for 𝑖 ∈
[2,3, . . . . , 𝑛]is added to record the times at which node 𝑖 is visited. It is cclearthat if an 𝑎𝑟𝑐(𝑖, 𝑗) is 

selected, the time of node 𝑖 at which 𝑖 is visited must larger than that of node 𝑗. 

𝑡𝑗 > 𝑡𝑖 − 𝐵 ∗ (1− 𝑋𝑖,𝑗) (7) 

In this constraint (7),𝐵  is a arbitrarily large value. When 𝑋𝑖,𝑖  is equal to 1, which means 𝐵 ∗

(1 − 𝑋𝑖,𝑗) is equal to zero. Therefore, this constraint is changed to 𝑡𝑗 > 𝑡𝑖. There is an example that 

explains how to eliminate subtours by using the MTZ method. 

  

Figure 8. Special case of TSP 

4.5.  An Example of a TSP Problem 

Figure 8 consists of five American cities, which are Los Angeles, Cleveland, Minnesota, Miami, and 

Boston. Let’s Assume that one of the subtours includes Cleveland, Boston, and Los Angeles, and we 

can get 𝑠 = 𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑, 𝐵𝑜𝑠𝑡𝑜𝑛, 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 . Another subtour is 𝑠’ = 𝑀𝑖𝑎𝑚𝑖,𝑀𝑖𝑛𝑛𝑒𝑠𝑜𝑡𝑎 . So, 

𝑋𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝐵𝑜𝑠𝑡𝑜𝑛 = 1 , 𝑋𝐵𝑜𝑠𝑡𝑜𝑛,𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠 = 1 , 𝑋𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠,𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑 = 1 Now as per constraint (7) 

𝑡𝐵𝑜𝑠𝑡𝑜𝑛 > 𝑡𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑 

𝑡𝐿𝑜𝑠𝐴𝑛𝑒𝑔𝑙𝑒𝑠 > 𝑡𝐵𝑜𝑠𝑡𝑜𝑛 

𝑡𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑 > 𝑡𝐿𝑜𝑠𝐴𝑛𝑒𝑔𝑙𝑒𝑠 

It is obvious that it is impossible to find a solution for this set of conditions. The proof of 

contradiction can be used to prove this. There are 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 inequalities 

𝑡2 > 𝑡1 

𝑡3 > 𝑡2 

𝑡4 > 𝑡3 

⋮ 
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𝑡𝑛 > 𝑡𝑛−1 

𝑡1 > 𝑡𝑛 

Let us assume that these inequalities are correct, and we can add them together to get an inequality 

𝑡2 + 𝑡3+. . . . . . +𝑡𝑛 + 𝑡1 > 𝑡1 + 𝑡2+. . . . . . +𝑡𝑛−1 + 𝑡𝑛 

The left side is equal to the right side. This equality is false, and the assumption is false. Therefore, 

it is proven. 

Therefore, adding the constraint[equation6] to the canonical form can delete the subtours. The 

combining LP model can be written as 

𝑚𝑖𝑛∑𝑑𝑖,𝑗 ∗ 𝑋𝑖,𝑗 (1) 

∑𝑋𝑖,𝑗 = 𝑛 (2) 

∑𝑋𝑖,𝑘 = 1, ∀𝑖 ∈ 𝑉, 𝑘 ≠ 𝑖 (3) 

∑𝑋𝑘,𝑗 = 1, ∀𝑗 ∈ 𝑉, 𝑘 ≠ 𝑗 (4) 

𝑋𝑖,𝑖 = 0, ∀𝑖 ∈ 𝑉 (5) 

𝑡𝑗 > 𝑡𝑖 − 𝐵 ∗ (1− 𝑋𝑖,𝑗) (7) 

4.6.  GG Formulation 

The Gavish-Graves formulation (also widely known as the GG formulation, the code can be found in 

the “https://github.com/vdggtw/Travelling-Salesman-Problem) is known as the prototypical 

formulation for commodity flow formulations, where the additional variables represent commodity 

flows through the arcs and satisfy additional flow conservation constraints 

4.6.1.  Additional flow conservation constraints. Algebraically, the constraint is that the sum of the arc 

flows directed toward a node plus the supply of the node (if any) is equal to the sum of the arc flows 

directed away from that node. 

 

Figure 9. Single Commodity Flow 

Figure 9 shows a special case of Single Commodity Flow. 

The GG formulation has numerous advantages over other formulations:  

1.GG formulation has fewer constraints compare to DFJ; it has “n(n-2)-1” number of constraints. It 

allows the formulation to find a solution for a considerably great number of vertices.  
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2. GG formulation is, in fact, a highly adaptive and widely applicable formulation, designed to 

solve complex ATPS where the weight of the routine may depend on the “traveler”. The GG 

formulation supports multi-commodity flow, just like what has been previously discussed about 

merchandise passing customs. Based on the commodity type, the percentage of taxation expense may 

differ diversely.  

3. GG utilizes an additional set of variables to determine of presequence arcs between each two 

points. This is GG formulation’s elimination method for solving sub-tour issue. 

 

Figure 10. Multiple Commodity Flow 

Figure 10 shows a case of Multiple Commodity Flow. 

∑𝑍𝑖,𝑗
𝑗=1

−∑𝑍𝑖,𝑗
𝑗≠1

    𝑖 = 2, . . . , 𝑛 (8) 

𝑍𝑖,𝑗 ≤ (𝑛 − 1) ∗ 𝑦𝑖,𝑗    𝑖 = 2, . . . , 𝑛    𝑗 = 1, . . . , 𝑛 (9) 

𝑍𝑖,𝑗 ≥ 0    ∀𝑖, 𝑗 (10) 

Constraint [equation 8]: Check if flow variable exists between node s with only one unit. 

Constraint [equation 9]: Ensures flow is possible when nodes are connected. 

Constraint [equation 10]: 𝑍𝑖,𝑗  describes a single commodity’s flow vertex 𝑥𝑖,𝑗  from every other 

vertex.  

4.6.2.  Branch and Bound Formulation. Unlike the other three formulations, Branch and Bound 

formulation (The code can be found in the “https://github.com/vdggtw/Travelling-Salesman-Problem) 

eliminates the subtours by separating some small problems from the main problem rather than 

increasing the number of constraints. First, we use a simplex loop to obtain a feasible solution with or 

without subtours. If the feasible solution contains no subtours, the optimal solution is found. 

Otherwise, we should choose a subtour with the least number of nodes as the main subtour. At this 

point, we separate the subproblem from the main problem, and let one of the Xi,j in the main subtour 

be 0. To force Xi,j to be zero, we can let the distance from i to j be arbitrarily large, such as 108. 
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Figure 11. Special case of TSP 

 

Figure 12. Subtours of the big path  

Figure 11 and 12 shows a special case of TSP and its subtours. In this case, we choose the subtler 

with the largest number of nodes to explain more clearly. So the main subtour is Cleveland →  Boston 

→  Los Angeles. In problem 1(P1), 𝑋𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝐵𝑜𝑠𝑡𝑜𝑛  is chosen as zeros, so the 

𝑑𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝐵𝑜𝑠𝑡𝑜𝑛 in the distance matrix are changed to 108. 

𝐗 =

(

 
 

𝑁𝑢𝐿𝐿 49.0 47.5 39.7 38.0
49.0 𝑁𝑈𝐿𝐿 37.4 52.4 24.3

108 37.4 𝑁𝑈𝐿𝐿 40.8 31.6
39.7 52.4 40.8 𝑁𝑈𝐿𝐿 28.5
38.0 24.3 31.6 28.5 𝑁𝑈𝐿𝐿)

 
 

 

In the same way, we can create problem 2(P2) and problem 3(P3). 

Note that P1 and P2 partially overlap. In this example, the Hamiltonian cycle Cleveland →  Boston 

→  Miami →  Los Angeles →  Minnesota is present in both P1 and P2. The efficiency of the 

computations may be affected by the overlaps, so we need to delete the overlaps without losing any 

solution. To eliminate the overlaps, we can set 𝑋𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝐵𝑜𝑠𝑡𝑜𝑛  to 1 in P2. The method to set 

𝑋𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝐵𝑜𝑠𝑡𝑜𝑛 to 1 is like setting 𝑋𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝐵𝑜𝑠𝑡𝑜𝑛 to 0. We can simply set the distance from other 

points to Miami and the distance from Cleveland to other points to 108. 
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𝐗 =

(

 
 

𝑁𝑢𝐿𝐿 49.0 47.5 39.7 38.0

108 𝑁𝑈𝐿𝐿 37.4 52.4 24.3

47.5 108 𝑁𝑈𝐿𝐿 108 108

108 52.4 40.8 𝑁𝑈𝐿𝐿 28.5

108 24.3 108 28.5 𝑁𝑈𝐿𝐿)

 
 

 

There is no solution lost since we have already let the 𝑋𝑐𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑,𝑚𝑖𝑎𝑚𝑖 to be 0 in the P1. In the 

same way, The P3 can be changed to a more efficient form. Figure 13 shows the subtours after 

improvement. 

 

Figure 13. More efficient sub-tours 

After that, we get three subproblems. Then we use the simplex loop again to solve these three 

problems and get the three feasible solutions. If there is only one solution without subtours, that 

solution will be the final answer. If there is more than one solution without subtours, the smallest 

solution will be selected as the final answer. If there is no solution without subtours, the smallest 

solution will be selected as the next main problem, and the separation will be performed again. Finally, 

we can repeat the whole procedure until we get a feasible solution without subtours. The following 10 

steps are the summary of the whole procedure. Step 1: Solve the original problem to get a solution 

with or without subtours Step 2 If no subtour in the solution, go to Step 10 Step 3:Choose a subtour 

with the least number of nodes from the original problem as the main problem Step 4:Separate the 

main problem into some subproblems Step 5:Solve the subproblems, and get some feasible solution 

Step 6:If only one solution without subtours, go to Step 10Step 7:If more than one solutions that have 

no subtour, go to Step 9 Step 8:Choose the smallest solution as the original problem, and go to Step 3 

Step 9:Choose the smallest solution from the solutions without subtours Step 10:The optimal solution 

is found The Branch and Bound formulation is implemented in MATLAB as shown below. 

Table 1. Comparison and Evaluation 

The number of nodes 4 nodes 6 nodes 8 nodes 20 nodes 50 nodes 100 nodes 

DFJ(running time) 0.301s 0.453s 87.674s NULL NULL NULL 

MTZ(running time) 0.613s 0.576s 10.264s 3566.39s 7214.217s NULL 

GG(running time) 0.514s 0.618s 23.419s 4028.539s 8739.624s NULL 

BAB(running time) 1.333s 1.561s 1.229s 8.045s 79.949s 260.601s 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/28/20230393

114



Recommendation:  

1. 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠 ≤ 30 : DFJ Formulation  

2. 30 ≤ 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠𝑙𝑒𝑞100 : MTZ or GG Formulation  

3. 100 ≤ 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠 : Branch and Bound Formulation 

Table 1 shows the running times of each algorithm with different numbers of nodes.   According to 

the data, the branch-and-bound formulation covers the largest range of the node set and has a relatively 

short running time with a large number of nodes.   However, DFJ, MTZ, and GG can be perfectly 

executed with a small number of nodes.   Thus, BAB is the best choice for a large number of nodes, 

and DFJ, MTZ, and GG are good choices for a limited number of nodes.  

5.  Conclusion 

The algorithm of TSP can be used in many areas, such as automatic transportation systems, which is 

an important part of mankind’s path to full automation. The runtime determines the performance and 

response speed of the system. Therefore, better algorithms are needed as systems in the future will 

have to deal with huge amounts of data, such as millions of nodes. The shorter the runtime, the better 

the performance. 
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