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Abstract. Aiming at the current problem of insufficient i dentification ac curacy of  co ding re gions in 
DNA sequences, this study proposes a protein coding region identification m ethod b ased o n IHHO-
CNN-LSTM. Firstly, the data preprocessing of DNA sequences is transformed into feature vectors, and 
then the protein coding region identification model based on CNN-LSTM is e stablished. To address the 
limitations of parameter selection of CNN-LSTM, a hybrid strategy improved Harris Hawk Optimization 
(HHO) algorithm is introduced to achieve adaptive parameter searching of CNN-LSTM, so as to obtain 
the optimization model of white matter coding region identification b ased o n I HHO-CNN-LSTM. The 
improved model was used to accurately distinguish coding and non-coding regions. Two benchmark 
datasets, HMR195 and BG570, are selected for five-fold c ross-validation, a nd t he r esults s how t hat the 
AUC values of the model designed in this paper are 0.9854 and 0.9895, the corresponding identification 
accuracy is 0.9527 and 0.9645, respectively, which are significantly b etter t han o ther m odels, a nd also 
have a significant advantage i n t erms of computational e fficiency. The proposed method can efficiently 
and accurately identify protein coding regions, which can help promote the related research in the field of 
genetic engineering.

Keywords: protein coding region identification; CNN-LSTM; Harris Hawk Optimization algorithm; hybrid 
strategy

1. Introduction
The vast majority of eukaryotes now have sequences coding for proteins separated by non-coding
sequences in the gene sequence. The sequences that can code are also called exons, which conserve
genetic information. The sequences that cannot play a non-coding role are also known as Intron. The
accurate identification of Exon and Intron is also helpful for the construction of genetic engineering,
and also has a certain auxiliary role in the study of gene function in the field of biology, so it is
of great significance to carry out the research on the identification method of Exon and Intron [1].
Various methods have been proposed for exon identification in academia so far. Generally, they can be
categorized into methods based on homology comparison and methods that do not rely on homology
comparison. The method based on sequence homology is to use the existing gene database as the
standard to recognize the similarity of DNA sequences to be tested, so as to judge the exon and
intron regions of unknown sequences based on the existing experience [2]. BLAST and MUSCLE are
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common comparison tools, and in recent years, gene prediction programs such as GeMoMa have also
been proposed. Sequence homology-based methods are more accurate, but the high cost of sequencing
and the efficiency of comparison have constrained the development of this technology. Based on this,
many scholars have shifted their research focus to models that do not rely on comparison techniques.
Digital signal processing technology plays a key role in this field. Before digital signal processing, DNA
sequences usually need to be mapped numerically. The rapid development of machine learning also
provides new solutions for the identification of protein coding regions. Although many identification
methods have been proposed, the evaluation parameters of their performance in practical applications
have yet to be improved [3-5]. In this paper, based on the data preprocessing of exons and introns,
the obtained feature vectors are inputted into the CNN-LSTM classification model for training, and
the Harris Hawk Optimization (HHO) algorithm, which is improved by the hybrid strategy, is used for
parameter searching of CNN-LSTM, and it is verified through experiments that the designed IHHO-
CNN-LSTM model can realize the identification of exons and introns of eukaryotic organisms efficiently
and accurately and it has a certain promotion effect on the construction of genetic engineering.

2. Data sources and pre-processing
2.1. Data sources
In this paper, we analyzed the coding region discrimination of eukaryotic DNA sequences, and two
benchmark datasets were used, namely, HMR195 and BG570. HMR195 consists of 195 mammalian
DNA sequences, including human, mouse, and rat, with a total of 948 exons, and BG570 refers to a
genome test dataset of 570 vertebrate sequences, with a total of 2,649 exons. sequences, totaling 2,649
exons.BG570 refers to a genomic test dataset consisting of 570 vertebrate sequences. The two datasets
can be accessed at http://www. imtech.res.in/raghava /genebenchraghava/genebench. The length range
of the benchmark dataset, number of exons and introns are shown in Table ??. In order to ensure the
classification of exons and introns, the short (less than 20 bp) exons and introns were classified. bp) exon
and intron sequences were also included in the experiment to ensure the comprehensiveness of exon and
intron classification.

Table 1. The datasets

Data Sequence number Length range Exons Introns

HMR195 195 795 56500 948 1143
BG570 57 398 36845 2649 3211
Total 765 398 56500 3597 4354

2.2. Data pre-processing
Before realizing the precise identification of exons and introns, it is necessary to preprocess the DNA
sequence. In this paper, we adopt the numerical mapping method to transform the DNA sequence into
a numerical representation, and combine with the k-mer technique to transform the exons and introns in
the DNA sequence into a feature vector respectively. The process of extracting the feature vector of the
data is as follows: Given an exon ACAGCGACC: In step 1, starting from the first nucleotide A, the exon
is converted into a specific amino acid sequence by moving one nucleotide at a time, specifically, ’ACA’
corresponds to the amino acid T, ’CAG’ corresponds to the amino acid Q, and ’CAG’ corresponds to
the amino acid B. In step 2, the exon is converted into a specific amino acid sequence by moving one
nucleotide at a time. CAG’ corresponds to amino acid Q, ’AGC’ corresponds to amino acid S, ’GCG’
corresponds to amino acid A, ’CGA’ corresponds to amino acid R, ’GAC’ corresponds to amino acid A,
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and ’GAC’ corresponds to amino acid A. ’GAC’ corresponds to amino acid D, ’ACC’ corresponds to
amino acid T, and thus a specific amino acid sequence is obtained as TQSARDT; in the second step, the
classical relative frequency of k characters technique is combined, and the k value is specified to vary
from 1 to 5 to transform TQSA RDT into a feature vector.

3. Design of protein coding region identification model
3.1. CNN-LSTM
Convolutional Neural Network (CNN) is a deep feedforward network that includes convolutional
structures due to its powerful feature extraction ability. CNN can extract the relationships between
multidimensional time series data in spatial structures, consisting of input layers, convolutional layers,
pooling layers, fully connected layers, and output layers. Among them, the feature extraction of
convolutional layers is mainly carried out through convolutional kernels. The pooling layer is mainly
used for feature dimensionality reduction, reducing the number of parameters, and preventing overfitting.
After being processed by convolutional and pooling layers, the features enter the fully connected layer
and are further integrated, ultimately transforming into one-dimensional vectors [6]. Long Short Term
Memory (LSTM) Neural Network is an improved recurrent neural network. By using Gate to determine
the fate of information on a sequence, it is possible to remember information that needs to be memorized
for a long time, filter out unimportant information, and solve the long-term dependency problem of
recurrent neural networks (RNN). After its proposal, it was also improved by adding additional forget
gates. The improved long short-term memory neural network solves the problem of ”gradient vanishing”
in model training and can learn time series long short-term dependency information. It is currently the
most successful recurrent neural network architecture and has been applied in many scenarios[7].

Due to the good feature extraction ability of CNN and the significant advantage of LSTM in dealing
with time series problems, as well as the ability to avoid gradient vanishing, this study chooses to
combine CNN with LSTM to construct a protein coding region identification model. The specific
structure of CNN-LSTM model is shown in Figure 1. The first half of the model is CNN, which is used
for feature extraction. The extracted information is processed by the max pooling layer and Dropout
layer to effectively prevent overfitting. The latter part of the model is LSTM, which is used for data
classification. The CNN -LSTM model has hyperparameters such as convolutional layer kernel size,
number of convolutional kernels, number of LSTM layer neurons, batch size, etc [8]. The selection of
these hyperparameters will significantly affect the performance of the model. Therefore, this article uses
the hybrid strategy improved Harris Eagle Optimization (IHHO) algorithm to optimize the CNN LSTM
model, find the optimal hyperparameters, and improve the identification accuracy of the model.

3.2. Improvement of HHO
HHO is a new type of swarm intelligence optimization algorithm proposed in recent years, inspired by
the three-stage predatory method of search, search and mining switching, and mining in the predatory
behavior of birds like Harris eagles. This algorithm has a simple principle, few parameters, and strong
global search ability [9]. Once proposed, it has been widely applied in many fields. However, like
conventional intelligent optimization algorithms, the standard HHO algorithm still has shortcomings such
as difficulty in improving optimization accuracy, slow convergence speed, and susceptibility to falling
into local optima when solving high-dimensional complex optimization problems [10]. This paper design
an improved Harris Hawk algorithm (IHHO), which first utilizes the random traversal of chaotic systems
to improve the initial structure of the population, and proposes a population initialization mechanism
based on chaotic Tent mapping to enhance population diversity. Further nonlinear periodic adjustments
are made to the energy factor to depict the multi round game of ”encirclement escape” between Harris
eagles and prey, utilizing multiple rounds of global search and smooth switching between local mining to
improve the optimization ability; Finally, the small hole imaging opposition learning mechanism is used
to mutate elite individuals in the population, expand the search space, and avoid generating local optimal
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Figure 1. The specific structure of CNN-LSTM model

solutions. Using the improved algorithm IHHO to optimize CNN-LSTM, and applying the fusion model
to the identification of protein coding regions.

3.2.1. HHO In the HHO algorithm, the position of the Harris eagle individual can be regarded as a
candidate solution to the problem, iteratively approaching the optimal solution by utilizing the movement
in position. The algorithm itself can still be divided into global search and local mining [11].
(1) Global search
In this stage, individuals will randomly wait at a certain position, search for prey with keen vision in
their search space, and search for prey through two equally probable random behaviors. The specific
mathematical model is as follows:

X(t+ 1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2X(t)| , if q ≥ 0.5
(Xrabbit(t)−Xm(t))− r3 (lb+ r4(ub− lb)) , if q < 0.5

(1)

which X(t) is the original position of the Harris eagle, X(t+1) is the updated position, Xrand(t)is the
randomly selected individual position, Xrabbit(t) is the optimal solution position, q, r1, r2, r3, and r4 are
random quantities between (0,1), [lb, ub] is the upper and lower bounds on the search space of the Harris
eagle, and is the average position of the population during t-th iteration. If N is the population size, then

Xm(t) =
1

N

N∑
i=1

Xi(t). (2)

(2)Switching from search to mining
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The HHO algorithm utilizes the escape energy factor E to switch from global search to local mining,
which is defined as

E = 2E0

(
1− t

Tmax

)
. (3)

In the formula: E0 is the initial energy of the prey, E0 = 2 and -1 , rand ∈ (0, 1)is a random
quantity, and Tmax is the maximum number of iterations. If |E| ≥ 1, the algorithm enters the global
search stage. Otherwise, it will enter local mining. (3)Local mining During this stage, individuals will
adopt a surprise attack approach to attack their prey. Specifically, the HHO algorithm will update its
position using four strategies to simulate attack behaviour. λ is the probability of escape, if λ < 0.5,
then the prey successfully escapes. If λ > 0.5, then the prey fails to escape. The escape energy factor
E represents the individual’s soft and hard attack strategies. If |E| > 0.5, soft surround is executed. If
|E| < 0.5, then execute hard surround. There are four predatory strategies as follows: 1⃝ Soft surround.
If |E| > 0.5 and λ > 0.5 indicates that the target has sufficient energy to escape, and surrounding will
consume prey energy. Individuals will gradually choose the optimal position to prey on. The location
update method is

X(t+ 1) = ∆X(t)− E[JXrabbit(t)−X(t)],

∆X(t) = Xrabbit(t)−X(t),

J = 2(1− r5).

(4)

∆X(t) is the distance between the position of the prey and the individual Harris eagle, r5 is the
random quantity between (0,1), and J is the jumping distance during the prey’s escape process.

2⃝ Hard surround. If |E| < 0.5 and λ > 0.5 indicates that the prey does not have enough energy to
escape, and the Harris eagle will quickly hunt the prey. Its location update method:

X(t+ 1) = Xrabbit(t)− E [∆X(t)] . (5)

3⃝ Asymptotically fast diving soft surround. If |E| > 0.5 and λ < 0.5 indicates that the target has
sufficient energy to escape, and the individual will intelligently establish a soft surround and encircle the
prey through the following two strategies. The specific location update method is

X(t+ 1) =

{
Y : Xrabbit(t)− E[JXrabbit(t)−Xm(t)], if F (Y ) < F (X(t))
Z : Y + S × LF (D), if F (Z) > F (X(t))

(6)

D is the dimension, S is the D-dimensional random row vector, and LF is the Levi’s flight function.
4⃝ Asymptotically fast diving hard encirclement. If |E| < 0.5 and λ > 0.5 indicates that the prey has

less energy, and the Harris eagle will intelligently establish a hard surround and use the following two
strategies to surround the prey. The specific location update method is

X(t+ 1) =

{
Y : Xrabbit(t)− E[JXrabbit(t)−X(t)], if F (Y ) < F (X(t))
Z : Y + S × LF (D), if F (Z) < F (X(t))

(7)

3.2.2. Algorithm improvements (1) Population initialization based on chaotic Tent mapping The initial
population has a significant impact on the convergence speed and optimization accuracy of swarm
intelligence algorithms, and a diverse initial population structure can effectively promote algorithm
optimization. However, the HHO algorithm uses random methods for population initialization, which
results in insufficient spatial traversal and reduces search efficiency. This article introduces the Tent
chaos mechanism in the HHO algorithm, and its mapping method is as follows:

yk+1 =

{
yk · 0.7, yk ≤ 0.7(
10
3

)
(1− yk), yk > 0.7

(8)
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After generating chaotic values, the mapping rule between chaotic values and the population search
space is:

xi,j = lbj + vi,j × (ubj − lbj). (9)

xi,j is the positions of individual i in dimension j, ubj lbj are the position boundaries of individual i in
dimension j, j = 1, 2, ..., d , d is the position dimension. (2) Nonlinear periodic adjustment mechanism
of energy factors The escape energy factor E achieves the switching from global search to local mining,
which is an important indicator to measure the optimization ability of the HHO algorithm. E is linearly
decreasing in a single cycle during iteration, which does not conform to the natural law that Harris eagle
populations require multiple rounds of collaborative hunting of prey. This article introduces a nonlinear
periodic adjustment strategy for energy factors to describe the multi round nature of the Harris eagle’s
game of hunting prey. Specifically, in the update equation of E, the cosine function is used to describe
nonlinear periodicity, which is defined as:

(2) Nonlinear periodic adjustment mechanism of energy factors The escape energy factor E achieves
the switching from global search to local mining, which is an important indicator to measure the
optimization ability of the HHO algorithm. E is linearly decreasing in a single cycle during iteration,
which does not conform to the natural law that Harris eagle populations require multiple rounds of
collaborative hunting of prey. This article introduces a nonlinear periodic adjustment strategy for energy
factors to describe the multi round nature of the Harris eagle’s game of hunting prey. Specifically, in the
update equation of E, the cosine function is used to describe nonlinear periodicity, which is defined as:

E = 2E0

[
1− t

Tmax

]
· cos

[
2k +

π

2

t

Tmax

]
. (10)

k is the number of decreasing cycles, and Tmax is the maximum number of iterations. It can be
seen that when E approaches 0 periodically, it indicates that the Harris eagle will approach and prey
on prey with probability, achieving multiple rounds of global search and local mining processes. (3)
Small hole imaging adversarial learning mechanism During the iteration process of the HHO algorithm,
individuals in the population tend to approach the global optimal solution region in the later stage of
iteration, resulting in a loss of population diversity, iteration stagnation, and ultimately obtaining local
optimal solutions. This is also an inherent limitation of intelligent optimization algorithms. Therefore,
this article introduces an adversarial learning mechanism based on small hole imaging to mutate and
perturb the current optimal solution, enabling the algorithm to have the ability to jump away from local
optima. The adversarial learning solution for small hole imaging in d-dimensional space is

X ′
j =

lbj + ubj
2

+
lbj + ubj

2δ
· Xj

δ
. (11)

|E| > 0.5 and λ > 0.5 The execution steps of the IHHO algorithm are:
Step 1: Initialize the parameters and use the chaotic Tent mapping mechanism to generate the initial
population in the search space.
Step 2: Calculate the individual fitness values of the population.
Step 3: Update the prey escape energy factor E and jump distance.
Step 4: If |E| > 1 , the algorithm enters the global search stage and updates the position of the Harris
Eagle using equation (1).
Step 5: If |E| > 0.5 and λ > 0.5, the algorithm enters soft surround and uses equation (4) to update
the position of Harris Eagle. Step 6: If |E| < 0.5 and λ > 0.5, the algorithm enters hard surround and
updates the position of the Harris eagle using equation (5).
Step 7: If |E| > 0.5 and λ < 0.5, the algorithm enters an asymptotically fast diving soft surround.
Step 8: If |E| < 0.5 and λ < 0.5, the algorithm enters an asymptotically fast diving hard surround.
Step 9: Use the adversarial learning mechanism of small hole imaging to mutate and perturb the current
optimal solution, and select the best one to retain.
Step 10: Update the global optimal solution and its fitness value.
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Figure 2. The specific steps of IHHO-CNN-LSTM

Step 11: Determine the termination condition of the algorithm. If the maximum number of iterations is
reached, the algorithm terminates and outputs the current global optimal solution. Otherwise, proceed to
step 3 for execution.
The specific steps for optimizing the CNN-LSTM model using the IHHO algorithm are shown in Figure
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Figure 3. AUC values of different model identification results

Figure 4. Accuracy rate of different model identification results

Figure 5. Running timeof different model identification results

2. Each Harris eagle individual represents a set of hyperparameters. By calculating fitness values,
individuals are sorted and the best performing group is selected as the population for a new round of
iteration. The iteration is repeated until the maximum number of iterations is reached or a satisfactory
hyperparameter combination is found. The output hyperparameter combination is substituted into CNN-
LSTM to ultimately obtain the identification result of the protein coding region.
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4. Experimental analysis
In order to demonstrate the advantages and disadvantages of the new method in this article compared
with other methods, its identification results are compared with classical VOSSDFT, EIIPDFT, SPDFT,
and Code13 March. The main evaluation indicators are AUC value, accuracy, and algorithm running
time. VOSSDFT [12], EIIPDFT[13], and SPDFT [14] are all based on the Discrete Fourier Transform
(DFT) technique to distinguish between exons and introns in eukaryotes. Code13 Marple [15] is an
integrated algorithm based on autoregressive spectral analysis and wavelet transform. The calculation of
the method in this article is based on a device with an Intel (R) Core (TM) i9-13900H CPU @ 5.40 GHz
and 64.0GBRAM processor, programmed using Python 3.8.

From Figure 3, it can be observed that the AUC values of IHHO-CNN-LSTM for the identification of
HMR195 and BG570 reached 0.9854 and 0.9895, respectively, far exceeding the maximum values of the
other four models and significantly superior to the other three traditional DFT based methods and Code13
Marple. The same situation also occurs in the comparison of identification accuracy in Figure 4. IHHO-
CNN-LSTM has high identification accuracy of 0.9527 and 0.9645 for HMR195 and BG570, and also
has significant advantages compared to other methods. From the perspective of operational efficiency, it
can be seen from Figure 5 that IHHO-CNN-LSTM only takes 1.32 seconds and 3.24 seconds to recognize
HMR195 and BG570, which is less time compared to other methods and has an absolute advantage in
efficiency.

5. Conclusion
This paper proposes a protein coding region identification method based on IHHO-CNN-LSTM, which
achieves precise identification of gene exons and introns. Applying the combination model to coding
area identification provides a new research perspective for related studies. This article preprocessed
two eukaryotic datasets, HMR195 and BG570, using CNN-LSTM as the basic identification model and
IHHO algorithm for parameter optimization. As a result, the IHHO-CNN-LSTM identification model
was obtained, which achieved good identification performance in data and testing, significantly better
than other mainstream methods, and has certain reference value. However, this article has not yet taken
the structural information of proteins as an important factor for features, and future research will consider
incorporating structural information to further improve the performance of the model. Moreover, further
research in this article will expand the sample size and attempt to identify more protein coding regions
in more organisms, promoting further progress in biotechnology.
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