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Abstract. In this paper, we delve deeply into the intricacies of linear algebra, with a focus on 
the progression from finite to infinite-dimensional vector spaces. Starting with the foundational 
concepts, we define vectors, vector spaces, linear combinations, and basis. The importance of 
infinite-dimensional vector spaces is emphasized, particularly their role in better understanding 
and modeling complex mathematical phenomena. Through well-illustrated examples, we guide 
the reader on how to validate if a given set can be classified as a vector space. Additionally, the 
methodology to identify bases for these vast spaces is discussed in detail. Reduction methods 
also play an important role in determining bases for infinite-dimensional spaces. In our 
conclusion, we reflect on the evolution from basic vector concepts to the more nuanced 
understanding of infinite dimensions. This progression not only deepens our understanding of 
vectors but also sets the stage for advanced investigations into linear relationships and 
transformations. By bridging the gap between elementary vector knowledge and advanced 
infinite-dimensional spaces, this paper makes a notable contribution to the ever-evolving field 
of linear algebra, serving as a valuable resource for both students and practitioners. 
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1. Introduction 
Vector spaces are a fundamental concept in mathematics that provides a powerful framework for 
studying linear relationships and transformations. This field encompasses a wide range of topics, from 
basic vector arithmetic to advanced linear algebra and functional analysis. Vector spaces not only find 
extensive use in pure mathematics but also play a crucial role in various scientific and engineering 
disciplines, making them valuable tools for mathematicians, physicists, engineers, and researchers 
from diverse fields[1]. 
 Vector spaces are non-empty sets of elements. In the conventional understanding of vector spaces, 
these elements are finite-dimensional[2]. However, as mathematical inquiries and real-world 
challenges became more sophisticated, the limitations of finite-dimensional vector spaces became 
evident. There emerged a need to explore more intricate structures that could accurately model 
continuous and infinitely varying phenomena, which gave rise to the concept of infinite-dimensional 
vector spaces. Infinite-dimensional vector spaces deal with sets, including sets of functions, enabling 
mathematicians and scientists to study complex systems like Hilbert spaces, Banach spaces, partial 
differential equations, and quantum mechanics more rigorously. The extension to infinite dimensions 
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is also essential in functional analysis, a field that facilitates a deeper understanding of linear functions 
and their properties[3].  

2. Definitions in Finite-Dimensional Vector Space 
To better understand the concept of infinite-dimensional vector spaces, let us begin by defining what a 
vector space is. 

2.1. Vector Space 
In this section, we define a vector space as a non-empty set  that satisfies the following ten 
conditions for vectors   and scalars : 

1. The set V is closed under vector addition: . 
2. Vector addition is commutative: . 
3. Vector addition is associative: . 
4. There exists a zero vector  such that  for all . 
5. Each  has an additive inverse  such that . 
6. The set  is closed under scalar multiplication: . 
7. Scalar multiplication distributes over scalar addition: . 
8. Scalar multiplication distributes over vector addition: . 
9. Ordinary multiplication of scalars with scalar multiplication: . 
10.Multiplication by the scalar 1 is the identity operation: . 

 While finite-dimensional vector spaces are well-understood and are taught as the foundation of 
linear algebra, the principles that govern them serve as the bedrock for infinite-dimensional spaces. 
Just as the definition of a finite-dimensional vector space rests on vectors, linear combinations, and 
bases, infinite-dimensional spaces extrapolate these notions to encompass a broader array of 
mathematical objects, especially functions[4]. 

2.2. Vector 
With vectors as the elements of the space, let us quickly define vectors as well. Here, instead of a 
geometric object that has magnitude (or length) and direction in  or , we generalize the concept 
of vector to simply an element of a vector space, following the 10 properties of the vector space[4]. 
 Now, after knowing what vectors and vector spaces are, it is time to shift focus to some other 
important concepts in Linear Algebra.  

2.3. Linear Combination 
A linear combination is a mathematical operation that involves multiplying a set of values by 
coefficients and then adding the results together. In the context of vectors or functions, a linear 
combination is formed by scaling each vector or function by a certain factor (coefficient) and then 
adding them together.  
 Mathematically, given a set of vectors  and corresponding coefficients 

, the linear combination is expressed as: 

 

For instance, in a two-dimensional space, you may have two vectors and . 
Their linear combination with coefficients  and  would be: 

   

V
⃗u , ⃗v , ⃗w ∈ V a , b ∈ ℝ

⃗u + ⃗v ∈ V
⃗u + ⃗v = ⃗v + ⃗u

⃗u + ( ⃗v + ⃗w ) = ( ⃗u + ⃗v ) + ⃗w
⃗0 ∈ V ⃗u + ⃗0 = ⃗u ⃗u ∈ V

⃗u ∈ V ⃗v ∈ V ⃗u + ⃗v = ⃗0
V a ⋅ ⃗u ∈ V

(a + b) ⋅ ⃗u = a ⋅ ⃗u + b ⋅ ⃗u
a ⋅ ( ⃗u + ⃗v ) = a ⋅ ⃗u + a ⋅ ⃗v

(ab) ⋅ ⃗u = a ⋅ (b ⋅ ⃗u )
1 ⋅ ⃗u = ⃗u

ℝ2 ℝ3

⃗v 1, ⃗v 2, …, ⃗v n
a1, a2, …, an

a1 ⃗v 1 + a2 ⃗v 2 + … + an ⃗v n

⃗v 1 = [2,3] ⃗v 2 = [1, − 1]
a1 = 2 a2 = − 1

2 [2
3] + (−1)[ 1

−1] = [4
6] + [−1

1 ] = [4 − 1
6 + 1] = [3

7] (2.2)

(2.1)
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2.4. Linear Independence 
In linear algebra, a set of vectors is said to be linearly independent if none of the vectors in the set 
can be written as a linear combination of the others[2]. In other words, a set of vectors  
is linearly independent if the only solution to the “Equation 2.3” is the trivial solution where all 
coefficients  are zero: 

      

 For instance, in  (the plane of real numbers), the vectors ,  and  are linearly 
independent because neither can be formed by scaling or adding the other. On the other hand, the 
vectors  and  are linearly dependent because the second is just twice the first. 
Expanding the equation gives us a linear combination: 

  

 Here, it is noticeable that “Equation 2.5” and “Equation 2.6” are both related with “Equation 2.4” 
by scalar 2 and -3, which results in one unique equation: 

      

 Solving this equation for  gives: 

 

 Since we can find a non-trivial solution for  and  such that , the vectors  
and  are indeed linearly dependent. Specifically, the vector  is simply twice the vector , 
which means it can be obtained by scaling the first vector[4].  

2.5. Spanning 
If a set of vectors  span , it means that any vector within  can be expressed as a 
linear combination of the vectors in the set: 

 

Returning to our example in , the vectors , and  span the entire plane, as you 
can reach any point in the plane by scaling and adding these two vectors together[4].  

2.6. Basis  
In the context of vector spaces, a basis is a fundamental concept that plays a crucial role in 
understanding the structure and dimensionality of the space. In linear algebra, a basis of a vector space 

 is a set of vectors that spans  and is linearly independent[2]. 
 We call the sets of vectors like ,  and  which span  and are linearly 
independent natural bases, where each vector in the basis has all components equal to zero except for 
one component which is equal to one[4]. 

2.7. Dimension 
The concept of dimension is intrinsically tied to basis. The dimension of a vector space  is defined 
as the number of vectors in any basis of . 
 For instance, in (our conventional three-dimensional space), a basis consists of three vectors, 
such as the natural basis . So, the dimension of  is 3. It is noteworthy that 
all bases for a specific vector space will have the same number of vectors[4]. 

⃗v 1, ⃗v 2, …, ⃗v n

a1, a2, …, an

a1 ⃗v 1 + a2 ⃗v 2 + … + an ⃗v n = 0

ℝ3 [1,0,0] [0,1,0] [0,0,1]

[1,2, − 3] [2,4, − 6]

a1 + 2a2 = 0
2a1 + 4a2 = 0

−3a1 − 6a2 = 0

a1 + 2a2 = 0

a1

a1 = − 2a2

a1 a2 a1 ⃗v 1 + a2 ⃗v 2 = 0 ⃗v 1⃗v 2 ⃗v 2 ⃗v 1

⃗v 1, ⃗v 2, …, ⃗v n V V

[V ] = {a1 ⃗v 1 + a2 ⃗v 2 + … + am ⃗v m |a1, a2, …, am ∈ ℝ and ⃗v 1, ⃗v 2, …, ⃗v m ∈ V}

ℝ3 [1,0,0] [0,1,0] [0,0,1]

V V
[1,0,0] [0,1,0] [0,0,1] ℝ3

V
V

ℝ3

{[1,0,0], [0,1,0], [0,0,1]} ℝ3

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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3. Expanding From Finite to Infinite-Dimensional Vector Spaces 
The definition of vectors and vector spaces that we delved into in the previous section first 
materialized in the 19th century. Mathematicians such as Grassmann and Hamilton were instrumental 
in this pioneering phase[5]. Their contributions didn't merely represent abstract mathematical 
endeavors; they fundamentally reshaped the foundations upon which modern physics and engineering 
were built. 
 Grassmann developed the foundation for what is today recognized as linear algebra and vector 
spaces. He innovated the concept of the exterior product, expanding the realm of multiplication to 
vectors and paving the way for the exploration of higher-dimensional spaces. Hamilton, on the other 
hand, introduced quaternions — a type of non-commutative number system that extended complex 
numbers and has since found applications in a plethora of fields[5]. 
 The vectors we discuss here, however, typically refer to those residing in Euclidean spaces, a 
cornerstone of geometric concepts we encounter daily. The allure of Euclidean spaces is their tangible, 
intuitive nature. They provide a framework where abstract mathematical constructs seamlessly 
translate to our observable reality. Euclidean spaces, denoted as , are where vectors have a clear, 
finite number, , of components. For instance, the  plane or the three-dimensional space denoted by 

 epitomizes this[6]. Within these spaces, vectors are often visualized as arrows originating from one 
point to another, with length and direction, offering tangible representations of mathematical 
construction.  
 Consider an example vector  inhabiting  with components  and . This vector can 
also be represented as . To visually grasp this vector, Mathematica aids us by plotting an 
arrow in “Figure 1” extending from the origin to the point defined by these components[7]. 
 

 Similarly, venturing into ,  we encounter the vector  defined by its components , 
 and . Expressed by , we can portray  as an arrow initiating at the 

origin and culminating at the point dictated by its components in “Figure 2”[7]. 

ℝn

n ℝ2

ℝ3

⃗v ℝ2 v1 = 2 v2 = 3
⃗v = [2,3]

ℝ3 ⃗w w1 = 1
w2 = − 2 w3 = 4 ⃗w = [1, − 2,4] ⃗w

Figure 1. A visual representation of the 
vector  in . The arrow 
extends from the origin (0,0) to the 
point .

⃗v = [2,3] ℝ2

(2,3)v

0 1 2 3 4 x (units)0

1

2

3

4
y (units)
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 While vectors in  and  provide a tangible representation, the real world, with its myriad of 
complexities, sometimes demands more. Phenomena governed by differential equations, for instance, 
often require a broader, more flexible framework than finite-dimensional spaces can offer. This 
realization precipitated the leap to infinite-dimensional spaces, primarily driven by the scrutiny of 
differential equations and the expanse of function spaces[8]. As the 20th century dawned, functional 
analysis burgeoned, positioning infinite-dimensional spaces at its nucleus. Herein, functions ascended 
from being merely confined to finite sets of variables, metamorphosing into vectors within these 
boundless spaces, and differential and integral operators as the transformations governing them[8]. 
 David Hilbert, a luminary of this era, was foundational in fostering the study of infinite-
dimensional vector spaces. His innovations weren't just expansions; they epitomized a paradigm shift. 
By recognizing functions as vectors, Hilbert equipped mathematicians and scientists with an 
unprecedented tool, deepening our insight into intricate mathematical frameworks and spawning novel 
perspectives on both physical and mathematical phenomena[6][10]. 

4. Examples in Infinite Dimensions 
To have a better understanding of not only vectors but also the concept of infinite dimensions, let's 
start by proving the following are vector spaces and show that they are infinite-dimensional.  

4.1. Prove that . 

Proof. Let  be the set of vectors defined as: 

  

 Let  and scalar  (to avoid confusion since  is mentioned in the problem), 
suppose ,  and . Here, we define vector addition and 
scalar multiplication of  to be:  

1.  and  to be  
2. ,  and  to be  
3.  

 To show that  is a vector space, we must prove that it satisfies the following properties of the 
vector space: 

ℝ2 ℝ3

{(a1, a2, …) |ai ∈ ℝ for all i ∈ ℕ and 
∞

∑
i=1

|ai | < ∞}

V

V = {(a1, a2, …) |ai ∈ ℝ for all i ∈ ℕ}

⃗u , ⃗v , ⃗w ∈ V b ∈ ℝ a
⃗u = (u1, u2, …) ⃗v = (v1, v2, …) ⃗w = (w1, w2, …)

V
⃗u ⃗v ⃗u + ⃗v = (u1 + v1, u2 + v2, …)
⃗u ⃗v ⃗w ⃗u + ⃗v + ⃗w = (u1 + v1 + w1, u2 + v2 + w2, …)

c ⃗u = (cu1, cu2, …)
V

Figure 2. Three-dimensional visualization 
of the vector  in  with 
the arrow originates from the origin and 
reaches the point . 

⃗w = [1, − 2,4] ℝ3

(1, − 2,4)

(4.1)
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 · Closure under addition: Following the definition of vector addition, . 

Since  for all , it follows that . Also, . 

Therefore,  and  is closed under addition. 
 · Vector addition is commutative: Due to the same definition, vector addition of  and  
follows . Since  for all

, it follows that . Thus, , the vector addition 
is commutative.  
 · Vector addition is associative: Similarly, we define vector addition of and  follows: 

. Then . 
Since  for all , it follows that . Thus, 

, the vector addition is associative.  
 · Closure under scalar multiplication: Using our definition of scalar multiplication, 

. Since  for all  and , it follows that . Moreover, 

 Thus, , and  is closed under scalar multiplication. 

 · Existence of additive inverses: For any vector  in , the additive inverse  
is in . We have , therefore exist additive inverses. 
 · Satisfying other vector space properties: The other vector space properties, such as ordinary 
multiplication of scalars with scalar multiplication, can be proven with the properties of . 
 Therefore, we have shown that  satisfies all the vector space properties, and hence, it is a vector 
space. 

4.2. Prove that  is a vector space and is infinite-dimensional 

Proof. To prove that the set  forms a vector space, we need to verify 

that it satisfies the vector space properties: 
 · Closure under addition: Let  and  be arbitrary functions in . We have and  be arbitrary 
functions in  so we have: 

 

 Thus,  also belongs to . 
 · Closure under scalar multiplication: Let  be a function in  and let  be a scalar. We have 
be a function in  and let  be a scalar. We have 

   

 Therefore,  is also in . 
 · Associativity, commutativity, and other properties:The associativity of addition, commutativity 
of addition, and commutativity of scalar multiplication can be easily verified based on the properties 
of addition and scalar multiplication for functions. The existence of additive inverses and the 
compatibility of scalar multiplication with field multiplication can also be straightforwardly verified 
using the properties of addition and scalar multiplication for functions. 
 Since the set  satisfies all the vector space properties, we can conclude that  forms a vector 
space. This follows the properties of addition and scalar multiplication in . 
 The example above is known as the space of the  function. For a function  defined on a 
certain interval, the norm of , denoted as , is defined as the integral of the absolute value of 
the function over that interval. In mathematical notation: 

⃗u + ⃗v = (u1 + v1, u2 + v2, …)

ui, vi ∈ ℝ i ∈ ℕ ui + vi ∈ ℝ
∞

∑
i=1

|ui + vi | ≤
∞

∑
i=1

|ui | +
∞

∑
i=1

|vi | < ∞

⃗u + ⃗v ∈ V V
⃗u ⃗v

⃗u + ⃗v = (u1 + v1, u2 + v2, …) = (v1 + u1, v2 + u2, …) = ⃗v + ⃗u ui, vi ∈ ℝ
i ∈ ℕ ui + vi = vi + ui = k and k ∈ ℝ ⃗u + ⃗v = ⃗v + ⃗u

⃗u , ⃗v ⃗w
⃗u + ( ⃗v + ⃗w ) = (u1 + (v1 + w1), u2 + (v2 + w2), …) ( ⃗v + ⃗u ) + ⃗w = ((u1 + v1) + w1, (u2 + v2) + w2, …)

ui, vi, wi ∈ ℝ i ∈ ℕ ui + (vi + wi) = (ui + vi) + wi = k and k ∈ ℝ
⃗u + ( ⃗v + ⃗w ) = ( ⃗v + ⃗u ) + ⃗w

c ⃗u = (cu1, cu2, …) ui ∈ ℝ i ∈ ℕ u ∈ ℝ cui ∈ ℝ
∞

∑
i=1

|cui | = |c |
∞

∑
i=1

|ui | < ∞ c ⃗u ∈ V V

⃗u V − ⃗u = (−u1, − u2, …)
V ⃗u + (− ⃗u ) = (u1 + (−u1), u2 + (−u2), …) = (0,0,…)

ℝ
V

{ f (x) | ∫ℝ
| f (x) | d x < ∞}

V = { f (x) | ∫ℝ
| f (x) |d x < ∞}

f (x) g(x) V
V

| f (x) + g(x) | d x ≤ ∫ℝ
f (x) d x + ∫ℝ

g(x) d x < ∞

f (x) + g(x) V
f (x) V c

∫ℝ
|c f (x) | d x = |c |∫ℝ

f (x) < ∞

c f (x) V

V V
ℝ

L1 f (x)
f (x) ∥ f ∥1

(4.2)

(4.3)
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 On the other hand, we have the  norm, also called the Euclidean norm, which quantifies the 
magnitude of a function by measuring the “spread” of its graph using the squared values of the 
function over the interval. Denoted as  , it corresponds to the square root of the integral of 
squared function values: 

  

 In comparison to  functions,  functions give greater weight to larger values and are sensitive to 
outliers, thus providing a measure of “total squared magnitude”. These two norms offer distinct ways 
to assess the “size” of functions, each finding its applications in different areas of mathematics, such 
as optimization, signal processing, and image analysis. functions,  functions give greater weight to 
larger values and are sensitive to outliers, thus providing a measure of “total squared magnitude”. 
These two norms offer distinct ways to assess the “size” of functions, each finding its applications in 
different areas of mathematics, such as optimization, signal processing, and image analysis[9]. 

4.3.Find two bases for the vector space  for all  including a natural 
basis and the one that includes  and . 

 · Natural Basis: A natural choice for a basis is the set of sequences where only one entry is 1, and 
all others are 0. Specifically, for each natural number  let  be the sequence such that the -th entry is 
1 and all others are 0. This gives: 

 

 Thus, each element of  can be uniquely represented as a linear combination of the  making this 
set a basis for . 

 · Second Basis: Given the vectors and we can consider them 
along with the natural basis vectors. However, both  and  can be expressed in terms of the natural 
basis  as: 

  

 So, both  and  are linearly dependent on the natural basis . If we want to include and  in a 
basis, we would have to remove some of the  vectors, specifically  and  to avoid redundancy by 
applying Gauss’s Method of reduction:  

      

 We can now use “Equation 4.8” for  to reduce : 

∥ f ∥1 = ∫ | f (x) | d x < ∞

L2

∥ f ∥2

∥ f ∥2 = ∫ | f (x) |2 d x < ∞

L1 L2

V = {a1, a2, … |ai ∈ ℝ i ∈ ℕ}
[2,2,2…] [5,0,1,0,0…]

i ei i

⃗e 1 = [1,0,0,…]
⃗e 2 = [0,1,0,…]
⃗e 3 = [0,0,1,…]

⋮
V ei

V

⃗u = [2,2,2,…] ⃗v = [5,0,1,0,0,…]
⃗u ⃗v

ei

⃗u = 2( ⃗e 1 + ⃗e 2 + ⃗e 3 + …)
⃗v = 5 ⃗e 1 + ⃗e 3

⃗u ⃗v ei u v
ei e1 e3

⃗e 1 =
1
4 ( ⃗v −

1
2

( ⃗u − 2( ⃗e 2 + ⃗e 4 + ⃗e 5 + …)))
=

1
4 (5 ⃗e 1 + ⃗e 3 − ( ⃗e 1 + ⃗e 3))

=
4 ⃗e 1

4
= ⃗e 1

e1 e3

(4.5)

(4.6)

(4.7)

(4.8)

(4.4)
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 Thus, one possible basis that includes  and  can be: 

           

 By applying Gauss's Method of reduction, we have excluded  and . However, there are multiple 
bases that include  and . The specific basis you choose may vary depending on the particular 
requirements or context of a problem. 
 We can also verify our result by proving  as a basis for the vector space . 

Proof. To prove that the set  is a basis for the vector space , we need to 
show two properties: 
 · Spanning Property: We want to demonstrate that any vector  can be expressed 
as a linear combination of the vectors in the given set. Given vectors  and 

, we consider an arbitrary vector which can be represented 
in terms of , , and the remaining basis vectors with scalar :  

  

 A linear combination can also be derived with “Equation 4.11”: 

 

 Solving for the scaler, we note that: 

  

 This shows that we can express any vector $$w \in V$$ as a linear combination of the vectors in 
the given set, confirming the spanning property. 
 
 · Linear Independence Property: Let “Equation 4.11” equals 0 instead of : 

  

 We note that the only solution to this new “Equation 4.14” is when scalar , and thus each 
vector in the set is linearly independent.  
 As we have established both the spanning and linear independence properties, we conclude that the 
set  forms a basis for the vector space . 

⃗e 3 = ⃗v − 5 ⃗e 1

⃗u ⃗v

{ ⃗u , ⃗v , ⃗e 2, ⃗e 4, ⃗e 5, …}

e1 e3
u v

{ ⃗u , ⃗v , ⃗e 2, ⃗e 4, ⃗e 5, …} V

{ ⃗u , ⃗v , ⃗e 2, ⃗e 4, ⃗e 5, …} V

[a1, a2, …] ∈ V
⃗u = [2,2,2,…]

⃗v = [5,0,1,0,0,…] ⃗w = [w1, w2, …] ∈ V
⃗u ⃗v cu, cw, c2, c4, c5, …

cu ⃗u + cv ⃗v + c2 ⃗e 2 + c3 ⃗e 3 + c4 ⃗e 4 + … = ⃗w

2cu + 5cv = w1

2cu + 2c2 = w2

2cu + cv = w3
c4 = w4
c5 = w5

⋮

cv =
w3 − w1

4

cu =
3w3

8
+

w1

8

c2 = w2 −
3w3

4
−

w1

4
c4 = w4
c5 = w5

⋮

⃗w

cu ⃗u + cv ⃗v + c2 ⃗e 2 + c3 ⃗e 3 + c4 ⃗e 4 + … = 0

ci = 0

{ ⃗u , ⃗v , ⃗e 2, ⃗e 4, ⃗e 5, …} V

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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5. Conclusion  
Our exploration has traced a transformative path from elementary vectors to the abstract realm of 
vector spaces, ultimately expanding our understanding to embrace infinite dimensions. Commencing 
with the elemental notion of individual vectors representing magnitude and direction, we ventured into 
the structured domain of vector spaces. These spaces provided a systematic framework, facilitating the 
investigation of linear relationships and transformations. 
 However, as the intricacies of continuous and intricate phenomena unfolded, the constraints of 
finite-dimensional vector spaces came to light. This compelled us to embark on a paradigm shift 
towards infinite-dimensional vector spaces. In this expanded context, the conventional rules of vector 
addition and scalar multiplication persevered, albeit with an evolved scope[10]. 
 The progression into infinite dimensions was principally motivated by the study of differential 
equations and the exigencies of function spaces. The advent of functional analysis was instrumental, 
allowing functions themselves to be treated as vectors in these boundless spaces. This profound insight 
enabled a more accurate representation and examination of continuous phenomena. While finite-
dimensional vector spaces excelled in discrete scenarios, infinite-dimensional vector spaces proved 
paramount for comprehending the nuanced intricacies of the continuous world. 
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