
Bitcoin price and return prediction based on LSTM

Runzhi Yang

Faculty of Computer Science and Technology, Soochow University, Suzhou, China

2027407041@stu.suda.edu.cn

Abstract. This paper focuses on the prediction of Bitcoin prices and returns based on the Long

Short Term Memory (LSTM) neural network model, to better consider the impact of time factors.

Since Bitcoin has long dominated the digital currency trading market, many researchers have

completed many Bitcoin prediction results, including the screening of optimal features,

comparison of prediction models and classification of prediction problems. Based on previous

work, this article adds a Bitcoin revenue forecast section, presenting the results in the form of

charts and data to provide more intuitive trends and more accurate performance. This paper uses

LSTM as the experimental model, and uses the Bitcoin transaction history data set with

timestamps as the original input. After a specific normalization method, the original model is

trained, and then the subsequent transaction data is predicted. Compare it with the real value in

the data set to get the final experimental results show that in this prediction problem, the

performance of LSTM is slightly better than Autoregressive Integrated Moving Average

(ARIMA) and eXtreme Gradient Boosting (XGBoost); on the other hand, compared with price

prediction based on real values for prediction, the prediction fluctuations of return are more

obvious and more realistic, providing better reference value.

Keyword: Bitcoin price, deep learning, prediction, feature.

1. Introduction

Bitcoin is a Peer-to-peer (P2P) form of virtual currency that is generated through large-scale computing

based on certain algorithms. Users trade through Bitcoin wallets and addresses. Due to the advancement

of modern technology, the trading of Bitcoin has become more widespread and frequent. People profit

from the price fluctuations of Bitcoin by buying and selling. Due to the similarity between its trading

and stocks, the prediction of Bitcoin prices and returns has become a research topic.

The traditional solution to price and return prediction is to use multiple specific statistical models

and evaluate a series of technical indicators to assess the precision. However, traditional methods often

overlook the intricate and non-linear associations of data, making the prediction results sometimes lack

reference value.

In recent years, deep learning models have developed rapidly, among which the Long Short Term

Memory (LSTM) can better capture permanent dependencies and nonlinear models in time series data,

and has better adaptability in prediction problems.

On this basis, this paper uses the LSTM to forecast the price and return of Bitcoin trading by

comparing past data of Bitcoin trading. By training this model, it can learn the patterns and trends in the

Bitcoin trading market, thereby achieving prediction of future Bitcoin trading returns. Due to its complex

network structure and attention to time series data, the LSTM model enhances the precision of

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

74

forecasting and has stronger real-time prediction ability and better assistance in investment decision-

making. Through such predictions, investors and researchers can more accurately grasp the future

market trends and help them make more informed investment decisions.

2. Literature Review

In recent years, the Bitcoin trading market has received more attention, so many researchers have

conducted in-depth research on it. In 2017, H Jang and J Lee used the Bayesian Neural Network (BNN)

to examine the time series for Bitcoin transaction data [1]. They also selected the most pertinent

attributes of Bitcoin transactions extracted from the blockchain data. This resulted in an improved

performance in prediction. In 2018, S Velankar et al. were the first to explore Bitcoin market trends and

research the best features that influence Bitcoin prices and constructing a dataset containing daily

transaction data over five years [2]. Various features extracted from Bitcoin prices and payments on the

blockchain are used with existing information to predict daily price changes with the highest possible

accuracy. In 2019, S Ji et al. used various neural network models to study Bitcoin, including not only

stand-alone neural networks, but also combinations of these networks [3]. In 2020, Z Chen et al. looked

at using machine learning techniques to predict Bitcoin prices at different frequencies [4]. They begin

by categorising Bitcoin prices into the following two categories: daily prices and high-frequency prices.

The daily price of Bitcoin is predicted by focusing on specific high-dimensional features, such as assets

on the blockchain, trading networks, and current market conditions, and the price of Bitcoin within a

five-minute range is predicted by extracting features from information obtained from the

cryptocurrency's exchanges.

3. Methodology

The experimental dataset in this paper is from Kaggle, which includes Bitcoin trading data from 2012

to 2021. In this paper, firstly, the transaction data of Bitcoin is preprocessed, which includes

normalization operations to control the data difference within a small range. Then the data is inputted

into the LSTM (Autoregressive Integrated Moving Average (ARIMA) and eXtreme Gradient Boosting

(XGBoost) as a comparison) and trains it. Finally, use the trained model for prediction. The final

prediction result has three evaluation indicators: Mean Square Error (MSE), Root Mean Square Error

(RMSE), Mean Absolute Error (MAE).

3.1. Bitcoin transaction dataset with timestamps

The dataset, referred to as 'Bitcoin Historical Data', is sourced from Kaggle. The dataset includes Bitcoin

data provided by a specific exchange from January 2012 to March 2021. It provides up-to-the-minute

reporting on the OHLC (open high low close), volume, weighted price, etc. Timestamps are given in

Unix time. Those timestamps containing no transactions or activity are presented with NaNs filling their

data fields.

3.2. MinMaxScaler normalization

Data normalization involves limiting the range of data that requires processing via a specific algorithm.

This aids subsequent data processing and speeds up program execution. The principal function of

normalization is to statistically unify a sample distribution. Normalization places the values of the data

in the interval 0 to 1. This method is a probability distribution often used in statistics. Normalization

places data values within a certain interval. This method is a coordinate distribution often used in

statistics. MinMaxScaler normalizes a set of data so that its values range from 0 to 1, in order to eliminate

factors that cause significant differences in values between different features in different results. The

formula is as follows.

 𝑥∗ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
 (1)

In formula 1, the current value 𝑥 subtracted by the minimum value min(𝑥) in the dataset is
represented by the numerator, while the denominator represents the disparity between the two end values

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

75

of the interval in the dataset.

3.3. LSTM structure

LSTM is a specific Recurrent Neural Network (RNN) [5]. When RNN receives a long time series, the

transfer of information between two distant time steps becomes a difficult problem to solve. while LSTM

can learn long-term dependent information, better connect with context, and solve the problem of

insufficient short-term memory in RNN.

The three gates together form the LSTM. Through the functions of these three gates, information is

controlled and transmitted. As shown in figure 1.

Figure 1. LSTM unit

3.3.1. Gate. LSTM controls the state of cells through gates, allowing cells to forget or add memories.

The gate's structure comprises a sigmoid layer that multiplies the previous moment's cell state. The

output value from the sigmoid layer ranges from 0 to 1, which can be used as a gate control signal. 0

represents memory forgetting, and 1 represents memory addition.

3.3.2. Forget gate. The object of the forgetting gate is the cell state, and its function is to regulate the

information in the cell state, forget it or add it. The specific formula is as follows.

 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

In formula 2, first get the input xt, then get the hidden state ht−1, and splice the two together, that

is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight matrix Wf and add the

bias bf. Finally, ft is obtained by sigmoid activation function σ.

The gate value ft is a crucial aspect through which each tensor passes. As the cell state of the

preceding layer enters the oblivion gate, the corresponding gate value would determine the extent of

information that is lost. The oblivion gate value is computed from xt and ht−1. This formula means

that the cells in the upper layer selectively discard part of the information and selectively retain part of

the information. The amount of this information depends on the previously mentioned input xt and

hidden state ht−1.

3.3.3. Input gate. The target of the input gate is also the cell state. Its function is to determine what

information will be in storage, that is, the cell state selectively adds memory. The input gate is composed

of two components. The specific formula is as follows.

 it = σ(Wi ⋅ [ht−1, xt] + bi) (3)

 Ct̃ = Tanh(Wc ⋅ [ht−1, xt] + bC) (4)

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

76

In formula 3, similar to formula 2, first get the input xt, then get the hidden state ht−1, and splice
the two together, that is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight
matrix 𝑊𝑖 and add the bias 𝑏𝑖. Finally, it is obtained by sigmoid activation function σ.

This formula generates the input gate value and closely resembles the forget gate formula. But the

distinction lies in the target that will be applied at a later stage. This formula means that after the

information is entered, part of it is retained and part needs to be filtered out.

In formula 4, similar to formula 2, first get the input xt, then get the hidden state ht−1, and splice

the two together, that is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight

matrix 𝑊𝑐 and add the bias 𝑏𝑐. Finally, 𝐶𝑡̃ is obtained by Tanh activation function.

Similar to the way cells are calculated inside RNN, this formula is used for cell state updates.

Multiply the cell state Ct−1 by the output of the forget gate; then multiply the unupdated cell state Ct
by the output of the input gate. Add these two results to obtain the updated cell state Ct, which is used

as the input.

3.3.4. Output gate. The function of the output gate is to determine what is the final output. The output

gate also contains two parts. The specific formula is as follows.

 ot = σ(Wo ⋅ [ht−1, xt] + bo) (5)

 ht = ot ∗ Tanh(Ct) (6)

In formula 5, similar to formula 2, first get the input xt, then get the hidden state ht−1, and splice

the two together, that is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight

matrix Wo and add the bias bo. Finally, ot is obtained by sigmoid activation function σ.

This formula calculates the output gate value and follows the same calculation method as the forget

and input gates.

In formula 6, the new cell state Ct is transmitted to the Tanh activation function. The result obtained

is cross-multiplied with the result ot obtained in formula 5 to obtain ht.
This formula calculates the amount of information to be conveyed by the hidden state. The hidden

state that conveys the information is then transmitted to the next time step as the current cell output.

3.4. ARIMA model in prediction

The ARIMA Model [6], is composed of three key components: Auto Regressive (AR), Integrated (I),

Moving Average (MA).

The aim of the ARIMA is to predict future data using the historical information it has gathered. This

model learns the mode of the series in the data by studying the correlation and difference of the data

itself, which will be used for data prediction.

AR is used for parts of time series data with autoregressive characteristics. It focuses on observed

values in past periods and analyzes the impact of these values on current values.

I is used to make non-stationary time series stationary and eliminate trend and seasonal factors in the

time series through first-order or second-order difference processing.

MA is used to process the moving average part of the time series. It focuses on past prediction errors

and analyzes the impact of these errors on current values.

The three parts combine and work so that the ARIMA model not only learns the changing trends of

the data but also handle data with temporary, sudden changes, or noisy data.

3.5. XGBoost model in prediction

XGBoost trains one tree and then trains the next tree to predict the gap between it and the real distribution

[7]. It makes up for the gap through continuous training and finally uses a combination of trees to

simulate the real distribution.

In XGBoost, trees are units that increase or decrease in number and are used to fit the residuals of

previous predictions by learning functions. Each time a tree is added to the model, the above process is

repeated. This is the core algorithm of the model. The tree is formed through feature splitting. When the

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

77

model completes training, that is, after repeating the above process several times and obtaining several

such trees, it proceeds to predict the score of the sample. For each different sample, each tree will drop

a leaf with a specific score, determined by the sample characteristics. The prediction score of the sample

is the sum of these leaf scores.

The purpose of this form is to minimize the gap between the real and the predicted and make the

model have strong generalization ability in prediction problems.

3.6. Evaluation under the MSE RMSE MAE indicator

This paper uses four evaluation indicators, The specific formula and explanation are as follows.

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1 (7)

In formula 7, for every instance, determine the difference between the estimated 𝑦𝑖̂ and the real 𝑦𝑖,
then subsequently apply the square of this deviation. Then sum all the differences and divide by the

number of observations to get the mean squared error, or MSE.

MSE is a prevalent measure that quantifies the deviation between the predictions and the observed

data. It is extensively utilized in assessing the model's accuracy in fitting the given data [8].

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1 (8)

In formula 8, for every instance, determine the difference between the estimated 𝑦𝑖̂ and the real 𝑦𝑖,
then subsequently apply the square of this deviation. Then sum all the differences and divide by the total

number of observations to get MSE, and finally take the square root of MSE, or RMSE.

RMSE is a prevalent method of assessing the disparity between a model's forecasts and genuine

observations. It is utilised to assess the model's suitability to the provided data. RMSE is determined by

averaging of the squared deviation between the predicted and observed, then taking the square root.

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖̂ − 𝑦𝑖|
𝑛
𝑖=1 (9)

In formula 9, for each observation, calculate the absolute value of the deviation between the predicted

value 𝑦𝑖̂ and the actual observation 𝑦𝑖, sum all the differences and divide by the number of observations

to get MAE.

MAE is a widely-employed measurement that assesses the extent of variance between model

forecasts and observed results. Its function is to evaluate the accuracy of a model's agreeability with

provided data [9]. MAE is computed by averaging the absolute discrepancies between anticipated and

observed values.

4. Result

The results of the experiment are displayed in the following table. All results retain three significant

figures.

Table 1. Experimental result

Model MSE RMSE MAE

LSTM 0.00168 0.0410 0.0324

ARIMA 0.00196 0.0443 0.0348

XGBoost 0.00196 0.0443 0.0348

4.1. Performance Comparison on LSTM with ARIMA and XGboost

Observing the data in table 1, it can see that for the Bitcoin return issue, the LSTM model exhibits better

performance in comparison to the ARIMA and XGBoost models on the three indicators of MSE, RMSE,

and MAE. There is almost no difference in performance between the ARIMA and XGBoost models, but

the LSTM model due to the complexity of its network structure, the running time longer than the other

two models.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

78

4.2. Further Discussion about Bitcoin Prediction

Based on the existing models at the time, previous researchers conducted in-depth research on the

Bitcoin prediction problem and obtained accurate and convincing research results. However, in recent

years, deep learning models have developed rapidly, and models have been continuously updated and

improved. Especially in time series prediction models, many models with excellent performance have

emerged, such as Neural Basis Expansion Analysis for Interpretable Time Series Forecasting (N-

BEATS) and Deep Auto Regressive (DeepAR) [10,11]. They all demonstrate strong functionality in

different tasks. Bitcoin prediction problems should keep pace with the times, and constantly combine

old problems with new models. On the one hand, it can obtain more accurate and convincing results,

and on the other hand, it can also promote the update and progress of models for specific problems,

making it possible to The field of prediction for similar problems has better prospects for development.

5. Conclusion

This paper draws on previous research on Bitcoin price prediction based on LSTM and then studies the

Bitcoin return prediction problem based on the LSTM model. In terms of code, in the price prediction

part, the original author's code is retained, while in the return prediction part, the code is completed

independently. In terms of data, preprocessing was performed similarly to that of the original author; in

terms of models, construction, training, and prediction were completed, and the coding style was

consistent with the previous code; in terms of evaluation, three more common evaluation indicators were

used. Regarding the controlled experiment, this paper uses two common time series prediction models,

ARIMA and XGBoost, to better highlight the advantages and disadvantages of LSTM in this experiment.

Overall, compared to the other two models, the LSTM model performs better on this problem, which

is a good result. However, in terms of model complexity, LSTM is more complex than the other two

models, so it has a longer running time. Throughout the experiment, due to time constraints, there were

few adjustments to parameters, and the performance of each model under different parameters was not

obtained, otherwise, this would be a more convincing result.

References

[1] Jang, H. Lee, J. 2017, An empirical study on modeling and prediction of bitcoin prices with

bayesian neural networks based on blockchain information. (Ieee Access, vol. 6), pp. 5427-

5437.

[2] Velankar, S. Valecha S. Maji S. 2018, Bitcoin price prediction using machine learning. (In 2018

20th International Conference on Advanced Communication Technology ICACT, IEEE), pp.

144-147.

[3] CJi S. Kim J. Im, H. 2019, A comparative study of bitcoin price prediction using deep learning.

(Mathematics, vol. 7), no. 10, pp. 898.

[4] Chen, Z. Li, C. Sun, W. 2020, Bitcoin price prediction using machine learning: An approach to

sample dimension engineering, (Journal of Computational and Applied Mathematics, vol. 365),

pp. 112395.

[5] Staudemeyer, R. C. Morris, E. R. (2019). Understanding LSTM--a tutorial into long short-term

memory recurrent neural networks. arXiv preprint arXiv:1909.09586.

[6] Shumway, R H. Stoffer, D S. Shumway, R H. Stoffer, D S. 2017, Time series analysis and its

applications: with R examples, (ARIMA models), pp. 75-163.

[7] Chen, T. He, T. Benesty, M. Khotilovich, V. Tang, Y. Cho, H. 2015, Xgboost: extreme gradient

boosting. (R package version , vol. 1), no. 4, pp. 1-4.

[8] Marmolin, H. 1986, Subjective MSE measures. (IEEE transactions on systems, man, and

cybernetics, vol. 16), no. 3, pp. 486-489.

[9] Chai, T. Draxler, R R. 2014, Root mean square error (RMSE) or mean absolute error (MAE).

(Geoscientific model development discussions, vol. 7), no. 1, pp. 1525-1534.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

79

[10] Sbrana, A., Rossi, A. L. D. Naldi, M. C. (2020, December). N-BEATS-RNN: deep learning for

time series forecasting. In 2020 19th IEEE International Conference on Machine Learning and

Applications (ICMLA), pp. 765-768.

[11] Salinas, D. Flunkert, V. Gasthaus, J. Januschowski, T. 2020. DeepAR: Probabilistic forecasting

with autoregressive recurrent networks. (International Journal of Forecasting, vol. 36), no. 3,

pp. 1181-1191.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/26/20241021

80

