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Abstract. This paper focuses on the prediction of Bitcoin prices and returns based on the Long 

Short Term Memory (LSTM) neural network model, to better consider the impact of time factors. 

Since Bitcoin has long dominated the digital currency trading market, many researchers have 

completed many Bitcoin prediction results, including the screening of optimal features, 

comparison of prediction models and classification of prediction problems. Based on previous 

work, this article adds a Bitcoin revenue forecast section, presenting the results in the form of 

charts and data to provide more intuitive trends and more accurate performance. This paper uses 

LSTM as the experimental model, and uses the Bitcoin transaction history data set with 

timestamps as the original input. After a specific normalization method, the original model is 

trained, and then the subsequent transaction data is predicted. Compare it with the real value in 

the data set to get the final experimental results show that in this prediction problem, the 

performance of LSTM is slightly better than Autoregressive Integrated Moving Average 

(ARIMA) and eXtreme Gradient Boosting (XGBoost); on the other hand, compared with price 

prediction based on real values for prediction, the prediction fluctuations of return are more 

obvious and more realistic, providing better reference value. 

Keyword: Bitcoin price, deep learning, prediction, feature. 

1.  Introduction 

Bitcoin is a Peer-to-peer (P2P) form of virtual currency that is generated through large-scale computing 

based on certain algorithms. Users trade through Bitcoin wallets and addresses. Due to the advancement 

of modern technology, the trading of Bitcoin has become more widespread and frequent. People profit 

from the price fluctuations of Bitcoin by buying and selling. Due to the similarity between its trading 

and stocks, the prediction of Bitcoin prices and returns has become a research topic. 

The traditional solution to price and return prediction is to use multiple specific statistical models 

and evaluate a series of technical indicators to assess the precision. However, traditional methods often 

overlook the intricate and non-linear associations of data, making the prediction results sometimes lack 

reference value. 

In recent years, deep learning models have developed rapidly, among which the Long Short Term 

Memory (LSTM) can better capture permanent dependencies and nonlinear models in time series data, 

and has better adaptability in prediction problems. 

On this basis, this paper uses the LSTM to forecast the price and return of Bitcoin trading by 

comparing past data of Bitcoin trading. By training this model, it can learn the patterns and trends in the 

Bitcoin trading market, thereby achieving prediction of future Bitcoin trading returns. Due to its complex 

network structure and attention to time series data, the LSTM model enhances the precision of 
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forecasting and has stronger real-time prediction ability and better assistance in investment decision-

making. Through such predictions, investors and researchers can more accurately grasp the future 

market trends and help them make more informed investment decisions. 

2.  Literature Review 

In recent years, the Bitcoin trading market has received more attention, so many researchers have 

conducted in-depth research on it. In 2017, H Jang and J Lee used the Bayesian Neural Network (BNN) 

to examine the time series for Bitcoin transaction data [1]. They also selected the most pertinent 

attributes of Bitcoin transactions extracted from the blockchain data. This resulted in an improved 

performance in prediction. In 2018, S Velankar et al. were the first to explore Bitcoin market trends and 

research the best features that influence Bitcoin prices and constructing a dataset containing daily 

transaction data over five years [2]. Various features extracted from Bitcoin prices and payments on the 

blockchain are used with existing information to predict daily price changes with the highest possible 

accuracy. In 2019, S Ji et al. used various neural network models to study Bitcoin, including not only 

stand-alone neural networks, but also combinations of these networks [3]. In 2020, Z Chen et al. looked 

at using machine learning techniques to predict Bitcoin prices at different frequencies [4]. They begin 

by categorising Bitcoin prices into the following two categories: daily prices and high-frequency prices. 

The daily price of Bitcoin is predicted by focusing on specific high-dimensional features, such as assets 

on the blockchain, trading networks, and current market conditions, and the price of Bitcoin within a 

five-minute range is predicted by extracting features from information obtained from the 

cryptocurrency's exchanges. 

3.  Methodology 

The experimental dataset in this paper is from Kaggle, which includes Bitcoin trading data from 2012 

to 2021. In this paper, firstly, the transaction data of Bitcoin is preprocessed, which includes 

normalization operations to control the data difference within a small range. Then the data is inputted 

into the LSTM (Autoregressive Integrated Moving Average (ARIMA) and eXtreme Gradient Boosting 

(XGBoost) as a comparison) and trains it. Finally, use the trained model for prediction. The final 

prediction result has three evaluation indicators: Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE). 

3.1.  Bitcoin transaction dataset with timestamps 

The dataset, referred to as 'Bitcoin Historical Data', is sourced from Kaggle. The dataset includes Bitcoin 

data provided by a specific exchange from January 2012 to March 2021. It provides up-to-the-minute 

reporting on the OHLC (open high low close), volume, weighted price, etc. Timestamps are given in 

Unix time. Those timestamps containing no transactions or activity are presented with NaNs filling their 

data fields. 

3.2.  MinMaxScaler normalization 

Data normalization involves limiting the range of data that requires processing via a specific algorithm. 

This aids subsequent data processing and speeds up program execution. The principal function of 

normalization is to statistically unify a sample distribution. Normalization places the values of the data 

in the interval 0 to 1. This method is a probability distribution often used in statistics. Normalization 

places data values within a certain interval. This method is a coordinate distribution often used in 

statistics. MinMaxScaler normalizes a set of data so that its values range from 0 to 1, in order to eliminate 

factors that cause significant differences in values between different features in different results. The 

formula is as follows. 

 𝑥∗ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
 (1)  

In formula 1, the current value 𝑥  subtracted by the minimum value min(𝑥)  in the dataset is 
represented by the numerator, while the denominator represents the disparity between the two end values 
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of the interval in the dataset. 

3.3.  LSTM structure 

LSTM is a specific Recurrent Neural Network (RNN) [5]. When RNN receives a long time series, the 

transfer of information between two distant time steps becomes a difficult problem to solve. while LSTM 

can learn long-term dependent information, better connect with context, and solve the problem of 

insufficient short-term memory in RNN. 

The three gates together form the LSTM. Through the functions of these three gates, information is 

controlled and transmitted. As shown in figure 1. 

 

Figure 1. LSTM unit 

3.3.1.  Gate. LSTM controls the state of cells through gates, allowing cells to forget or add memories. 

The gate's structure comprises a sigmoid layer that multiplies the previous moment's cell state. The 

output value from the sigmoid layer ranges from 0 to 1, which can be used as a gate control signal. 0 

represents memory forgetting, and 1 represents memory addition. 

3.3.2.  Forget gate. The object of the forgetting gate is the cell state, and its function is to regulate the 

information in the cell state, forget it or add it. The specific formula is as follows. 

 𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)  

In formula 2, first get the input xt, then get the hidden state ht−1, and splice the two together, that 

is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight matrix Wf and add the 

bias bf. Finally, ft is obtained by sigmoid activation function σ.  

The gate value ft  is a crucial aspect through which each tensor passes. As the cell state of the 

preceding layer enters the oblivion gate, the corresponding gate value would determine the extent of 

information that is lost. The oblivion gate value is computed from xt and ht−1. This formula means 

that the cells in the upper layer selectively discard part of the information and selectively retain part of 

the information. The amount of this information depends on the previously mentioned input xt and 

hidden state ht−1. 

3.3.3.  Input gate. The target of the input gate is also the cell state. Its function is to determine what 

information will be in storage, that is, the cell state selectively adds memory. The input gate is composed 

of two components. The specific formula is as follows. 

 it = σ(Wi ⋅ [ht−1, xt] + bi) (3)  

 Ct̃ = Tanh(Wc ⋅ [ht−1, xt] + bC) (4)  
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In formula 3, similar to formula 2, first get the input xt, then get the hidden state ht−1, and splice 
the two together, that is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight 
matrix 𝑊𝑖 and add the bias 𝑏𝑖. Finally, it is obtained by sigmoid activation function σ. 

This formula generates the input gate value and closely resembles the forget gate formula. But the 

distinction lies in the target that will be applied at a later stage. This formula means that after the 

information is entered, part of it is retained and part needs to be filtered out. 

In formula 4, similar to formula 2, first get the input xt, then get the hidden state ht−1, and splice 

the two together, that is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight 

matrix 𝑊𝑐 and add the bias 𝑏𝑐. Finally, 𝐶𝑡̃ is obtained by Tanh activation function. 

Similar to the way cells are calculated inside RNN, this formula is used for cell state updates. 

Multiply the cell state Ct−1 by the output of the forget gate; then multiply the unupdated cell state Ct 
by the output of the input gate. Add these two results to obtain the updated cell state Ct, which is used 

as the input. 

3.3.4.  Output gate. The function of the output gate is to determine what is the final output. The output 

gate also contains two parts. The specific formula is as follows. 

 ot = σ(Wo ⋅ [ht−1, xt] + bo) (5)  

 ht = ot ∗ Tanh(Ct) (6)  

In formula 5, similar to formula 2, first get the input xt, then get the hidden state ht−1, and splice 

the two together, that is, [ht−1, xt]. Multiply the result obtained in the previous step with the weight 

matrix Wo and add the bias bo. Finally, ot is obtained by sigmoid activation function σ. 

This formula calculates the output gate value and follows the same calculation method as the forget 

and input gates. 

In formula 6, the new cell state Ct is transmitted to the Tanh activation function. The result obtained 

is cross-multiplied with the result ot obtained in formula 5 to obtain ht. 
This formula calculates the amount of information to be conveyed by the hidden state. The hidden 

state that conveys the information is then transmitted to the next time step as the current cell output. 

3.4.  ARIMA model in prediction 

The ARIMA Model [6], is composed of three key components: Auto Regressive (AR), Integrated (I), 

Moving Average (MA). 

The aim of the ARIMA is to predict future data using the historical information it has gathered. This 

model learns the mode of the series in the data by studying the correlation and difference of the data 

itself, which will be used for data prediction. 

AR is used for parts of time series data with autoregressive characteristics. It focuses on observed 

values in past periods and analyzes the impact of these values on current values. 

I is used to make non-stationary time series stationary and eliminate trend and seasonal factors in the 

time series through first-order or second-order difference processing. 

MA is used to process the moving average part of the time series. It focuses on past prediction errors 

and analyzes the impact of these errors on current values. 

The three parts combine and work so that the ARIMA model not only learns the changing trends of 

the data but also handle data with temporary, sudden changes, or noisy data. 

3.5.  XGBoost model in prediction 

XGBoost trains one tree and then trains the next tree to predict the gap between it and the real distribution 

[7]. It makes up for the gap through continuous training and finally uses a combination of trees to 

simulate the real distribution. 

In XGBoost, trees are units that increase or decrease in number and are used to fit the residuals of 

previous predictions by learning functions. Each time a tree is added to the model, the above process is 

repeated. This is the core algorithm of the model. The tree is formed through feature splitting. When the 
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model completes training, that is, after repeating the above process several times and obtaining several 

such trees, it proceeds to predict the score of the sample. For each different sample, each tree will drop 

a leaf with a specific score, determined by the sample characteristics. The prediction score of the sample 

is the sum of these leaf scores.  

The purpose of this form is to minimize the gap between the real and the predicted and make the 

model have strong generalization ability in prediction problems. 

3.6.  Evaluation under the MSE RMSE MAE indicator 

This paper uses four evaluation indicators, The specific formula and explanation are as follows. 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1  (7)  

In formula 7, for every instance, determine the difference between the estimated 𝑦𝑖̂ and the real 𝑦𝑖, 
then subsequently apply the square of this deviation. Then sum all the differences and divide by the 

number of observations to get the mean squared error, or MSE. 

MSE is a prevalent measure that quantifies the deviation between the predictions and the observed 

data. It is extensively utilized in assessing the model's accuracy in fitting the given data [8]. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1  (8)  

In formula 8, for every instance, determine the difference between the estimated 𝑦𝑖̂ and the real 𝑦𝑖, 
then subsequently apply the square of this deviation. Then sum all the differences and divide by the total 

number of observations to get MSE, and finally take the square root of MSE, or RMSE. 

RMSE is a prevalent method of assessing the disparity between a model's forecasts and genuine 

observations. It is utilised to assess the model's suitability to the provided data. RMSE is determined by 

averaging of the squared deviation between the predicted and observed, then taking the square root. 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖̂ − 𝑦𝑖|
𝑛
𝑖=1  (9)  

In formula 9, for each observation, calculate the absolute value of the deviation between the predicted 

value 𝑦𝑖̂ and the actual observation 𝑦𝑖, sum all the differences and divide by the number of observations 

to get MAE. 

MAE is a widely-employed measurement that assesses the extent of variance between model 

forecasts and observed results. Its function is to evaluate the accuracy of a model's agreeability with 

provided data [9]. MAE is computed by averaging the absolute discrepancies between anticipated and 

observed values. 

4.  Result 

The results of the experiment are displayed in the following table. All results retain three significant 

figures. 

Table 1. Experimental result 

Model MSE RMSE MAE 

LSTM 0.00168 0.0410 0.0324 

ARIMA 0.00196 0.0443 0.0348 

XGBoost 0.00196 0.0443 0.0348 

4.1.  Performance Comparison on LSTM with ARIMA and XGboost 

Observing the data in table 1, it can see that for the Bitcoin return issue, the LSTM model exhibits better 

performance in comparison to the ARIMA and XGBoost models on the three indicators of MSE, RMSE, 

and MAE. There is almost no difference in performance between the ARIMA and XGBoost models, but 

the LSTM model due to the complexity of its network structure, the running time longer than the other 

two models. 
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4.2.  Further Discussion about Bitcoin Prediction 

Based on the existing models at the time, previous researchers conducted in-depth research on the 

Bitcoin prediction problem and obtained accurate and convincing research results. However, in recent 

years, deep learning models have developed rapidly, and models have been continuously updated and 

improved. Especially in time series prediction models, many models with excellent performance have 

emerged, such as Neural Basis Expansion Analysis for Interpretable Time Series Forecasting (N-

BEATS) and Deep Auto Regressive (DeepAR) [10,11]. They all demonstrate strong functionality in 

different tasks. Bitcoin prediction problems should keep pace with the times, and constantly combine 

old problems with new models. On the one hand, it can obtain more accurate and convincing results, 

and on the other hand, it can also promote the update and progress of models for specific problems, 

making it possible to The field of prediction for similar problems has better prospects for development. 

5.  Conclusion 

This paper draws on previous research on Bitcoin price prediction based on LSTM and then studies the 

Bitcoin return prediction problem based on the LSTM model. In terms of code, in the price prediction 

part, the original author's code is retained, while in the return prediction part, the code is completed 

independently. In terms of data, preprocessing was performed similarly to that of the original author; in 

terms of models, construction, training, and prediction were completed, and the coding style was 

consistent with the previous code; in terms of evaluation, three more common evaluation indicators were 

used. Regarding the controlled experiment, this paper uses two common time series prediction models, 

ARIMA and XGBoost, to better highlight the advantages and disadvantages of LSTM in this experiment. 

Overall, compared to the other two models, the LSTM model performs better on this problem, which 

is a good result. However, in terms of model complexity, LSTM is more complex than the other two 

models, so it has a longer running time. Throughout the experiment, due to time constraints, there were 

few adjustments to parameters, and the performance of each model under different parameters was not 

obtained, otherwise, this would be a more convincing result.  
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