
Controlled remote implementation of operations for many 

systems 

Chengxu Liu 

Capital Normal University High School, Beijing, China, 100048 
 

liuchengxu2025@gmail.com 

Abstract. Quantum communication plays a key role in the next generation of information 

transfer and security schemes, by using quantum entanglement and measurements from quantum 

mechanics. We introduce the mathematical and physical foundations of quantum communication, 

such as the CNOT gate and Kronecker product. Then we propose two quantum communication 

protocols, namely dense coding and stealth coding. These protocols offer unique advantages that 

are theoretically unbreakable. Then we extend the protocols to the quantum communication 

protocol allowing for third-party supervision to ensure information security. Based on this, a 

communication protocol involving four parties is designed, enabling them to exchange 

information while being supervised. 
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1.  Introduction 

Quantum entanglement has been used to various quantum protocols such as teleportation and dense 

coding assisted by classical channels [1,2]. Ref. [3,4] showed the operational principles and 

mathematical foundations of several existing quantum communication protocols. Besides, quantum 

protocols can also be used for classical computers [5]. Current existing classical encryption methods are 

no longer entirely secure, as methods for rapidly breaking classical encryption have been proposed [6]. 

After addressing issues such as decoherence and noise [7,8], the unique advantages of quantum 

encryption are gradually becoming apparent [9,10]. Subsequently, researchers investigated practical 

steps for quantum information transmission protocols, aiming to reduce costs and enhance efficiency 

[11]. Next, the quantum cost of dense coding and teleportation protocols has been evaluated in terms of 

CNOT gates [12]. Authors in [13] showed that the quantum remote control may be applied to realize the 

teleportation unitary gates. Further, the similar technique has been used to teleport angles with a secure 

way [14]. Further, multipartite scenarios have been considered for a deterministic single-qubit. That is, 

recent advancements in the field of remote implementation of partially unknown quantum operations on 

multiple qubits have led to significant breakthroughs, rendering practical operations feasible. These 

developments have substantially propelled the potential applications of quantum communication and 

networking forward [15]. Besides, operation sharing with five-qubit cluster state has been established 

[16,17]. These operations and protocols provide a good foundation for realizing more complex protocols 

of transmitting information securely. 
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In this paper, we develop the above protocols by constructing a multi-party quantum security protocol 

in terms of the so-called remote-controlled implementation of operations. In Sec. II, we delve into the 

CNOT gate, Hadamard Gate, and the Kronecker product. Subsequently, we provide a detailed exposition 

on the operational mechanisms of current quantum dense coding and quantum stealth coding protocols. 

In Sec. III, we discuss a quantum Quantum Communication Protocols, which Bob send massage to 

Charlie and Alice have ability to control the message transmit. Then in Sec. IV, by redesigning the 

communication protocol, we achieve the controlled communication among Alice, Bob, Charlie, and 

Daniel. Alice measures her qubit, and then the receiver Charlie and Daniel both measure their qubit. As 

a result, Bob, Charlie and Daniel share a stator of particles b, C and D. Then Bob can perform a local 

unitary gate containing a parameter unknown to Alice, Charlie and Daniel. We finally conclude in Sec. 

V. 

2.  Preliminaries 

In this section, we review the preliminary knowledge for this paper. In Sec. II A, we review the notion 

of Kronecker product and its basic properties. In Sec. II B, we review the Hadamard gate, controlled 

NOT gate and Bell states and so on. In Sec. II C we introduce the protocol of quantum super dense 

coding. In Sec. II D, we introduce the protocol of quantum teleportation. 

2.1.  Kronecker product 

The Kronecker product is a computational method that allows for the multiplication of any two matrices 

without the constraints on the number of rows and columns. The following matrices are given. 

 𝐴 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) ,𝐵 =

(

 

𝑏11 𝑏12 ⋯ 𝑏1𝑞

𝑏21 𝑏22 ⋯ 𝑏2𝑞

⋮ ⋮ ⋱ ⋮
𝑏𝑝1 𝑏𝑝2 ⋯ 𝑏𝑝𝑞)

 .  

Then we define the Kronecker product 

 𝐴⊗ 𝐵 = (

𝑎11𝐵 𝑎12𝐵 ⋯ 𝑎1𝑛𝐵
𝑎21𝐵 𝑎22𝐵 ⋯ 𝑎2𝑛𝐵
⋮ ⋮ ⋱ ⋮

𝑎𝑚1𝐵 𝑎𝑚2𝐵 ⋯ 𝑎𝑚𝑛𝐵

).  

We describe the following properties. 

(1) If matrix A is an 𝑚 × 𝑛 matrix, and the matrix B is a 𝑝 × 𝑞 matrix, then the Kronecker product 

of the matrices 𝐴 and 𝐵 is defined above, regardless of the size of 𝐴 and 𝐵. In other word, the Kronecker 

product of A and B, denoted 𝐴⊗𝐵, is an 𝑚𝑝 × 𝑛𝑞 matrix, resulting from multiplying every element of 

𝐴  by matrix 𝐵 . Similarly, the Kronecker product of B and A, denoted 𝐵⊗ 𝐴 , is a 𝑝𝑚 × 𝑞𝑛  matrix, 

resulting from multiplying every element of 𝐵 by matrix 𝐴. 

(2) Next, we introduce the distributive property. The Kronecker product has a distributive property 

over addition, 𝐴⊗ (𝐵 + 𝐶) = 𝐴⊗ 𝐵 + 𝐴⊗ 𝐶. 

(3) Third, the mixed product property of Kronecker product is (𝐴 ⊗𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶)⊗ (𝐵𝐷). 
(4) Four the transpose property of Kronecker product is (𝐴⊗ 𝐵)𝑇 = 𝐴𝑇⊗𝐵𝑇. 

(5) Finally the scalar multiplication property is 𝑐(𝐴⊗ 𝐵) = (𝑐𝐴) ⊗ 𝐵 = 𝐴⊗ (𝑐𝐵). 

2.2.  Gates and states 

We introduce the Hadamard gate as follows. 

 𝐻 =
1

√2
[
1 1

1 −1
]. (1) 

The Hadamard operation can transform the qubit |0⟩  and |1⟩  into their superposition with equal 

weights. The specific formula is as follows. 
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 𝐻|0⟩ =
|0⟩+|1⟩

√2
, (2) 

 𝐻|1⟩ =
|0⟩−|1⟩

√2
. (3) 

Next, the CNOT gate is a quantum gate capable of transforming quantum states in the form of |𝑎, 𝑏⟩ 
into |𝑎, 𝑎 ⊕ 𝑏⟩ where 𝑎, 𝑏 = 0,1. The operating principle of the CNOT gate is to take the first qubit as 

the control qubit, and perform the opposite transformation on the second qubit based on the state of the 

control qubit. It is important to note that the CNOT gate cannot operate on individual quantum states, as 

it automatically considers the first qubit as the decision maker. The CNOT gate has the matrix form as 

follows. 

 𝐶𝑁𝑂𝑇 = [

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

]. (4) 

There are four forms of Bell states, each of which is a maximally entangled state of two quantum 

bits. The properties of entanglement are used to transfer information in the following quantum 

communication. The specific formula of four Bell states are as follows. 

 |Φ+⟩ =
1

√2
(|00⟩ +|11⟩), (5) 

 |Φ−⟩ =
1

√2
(|00⟩ −|11⟩), (6) 

 |Ψ+⟩ =
1

√2
(|01⟩ +|10⟩), (7) 

 |Ψ−⟩ =
1

√2
(|01⟩ −|10⟩). (8) 

2.3.  Quantum Dense Coding 

 

Figure 1. The source S builds an EPR pair and sends the two particles of the pair to Alice and Bob, 

respectively 

The dense coding protocol is presented in Figure 1. The EPR pair has the expression 

 |𝜙+⟩ =
|00⟩+|11⟩

√2
. (9) 

Using the Hadamard gate assisted by the CNOT gate implemented in the product state |0,0⟩, we can 

prepare the EPR pair as follows. 

 𝐶𝑁𝑂𝑇(𝐻 ⊗ 𝐼)|00⟩ = |𝜙+⟩. (10) 

Subsequently, the Hermitian and unitary properties of the Pauli matrices are utilised for information 

encryption. There are four distinct scenarios, respectively corresponding to the transmission of message 

states |00⟩, |01⟩, |10⟩, and |11⟩. The specific cases are as follows. 

First. The message state is |00⟩. 
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 𝐼 ⊗ 𝐼|𝜙+⟩ = |𝜙+⟩. (11) 

Hence, Alice does nothing from her side. Mathematically, the physical operation is represented by 

the identity matrix as above. 

Second. The message state is |01⟩. 

 𝜎𝑥⊗ 𝐼|𝜙+⟩ = |𝜙+⟩. (12) 

The calculation detail is as follows. 

 [

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

] ⋅
1

√2
[

1

0

0

1

] =
1

√2
[

0

1

1

0

]. (13) 

Third. The message state is |10⟩. 

 𝜎𝑧⊗ 𝐼|𝜙+⟩ = |𝜙−⟩. (14) 

The calculation detail is as follows. 

 [

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

] ⋅
1

√2
[

1

0

0

1

] =
1

√2
[

1

0

0

−1

]. (15) 

Finally. The message state is |11⟩. 

 𝑖𝜎𝑦⊗ 𝐼|𝜙+⟩ = |𝜓−⟩. (16) 

The calculation detail is as follows. 

 [

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

] ⋅
1

√2
[

1

0

0

1

] =
1

√2
[

0

1

−1

0

]. (17) 

We also need decode the message by inverse operation. That is, 

 (CNOT(𝐻 ⊗ 𝐼))
−1
= (𝐻 ⊗ 𝐼)CNOT. (18) 

We record this operator as B. By taking the decoding operator, Bob can finally obtain the correct 

message. 

 𝐵|𝜓+⟩ = |01⟩𝐵, |𝜓−⟩ =|11⟩, 𝐵|𝜙+⟩ = |00⟩, 𝐵|𝜙−⟩ =|10⟩. (19) 

2.4.  Quantum teleportation 

Quantum invisible transmission of states through quantum entanglement of Bell states allows the 

transmission of quantum information at both ends solely through the classical channel. The principles 

and methods are as follows. 

 

Figure 2. (a) Image content is densely coded (b) for quantum invisible state transfer 
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Suppose Alice wants to convey to Bob the two-energy-level quantum information that is in a 

superposition state 𝛼|0⟩ + 𝛽|1⟩. She can use the second method which is shown in Figure 2. 

Step 1. We build the EPR pair. 

The source S generates an EPR pair namely a Bell state, and sends the first half to Alice and the 

second half to Bob. Make sure the pair of quanta is in an entangled state |𝜓+⟩ =
1

√2
(|01⟩ +|10⟩). To 

build this EPR pair, S should carry out the physical operation as follows. 

 𝐶𝑁𝑂𝑇(𝐻 ⊗ 𝐼)|00⟩ = |𝜓+⟩. (20) 

By sending the EPR pair to Alice and Bob, Alice has two particles, which are respectively half of the 

EPR pair and the message qubit she wants to transmit to Bob. On the other hand Bob only has one qubit, 

namely the other half of EPR pair. 

The state of the three qubits are given by the tensor product of |𝜓⟩ and |𝜓+⟩ as follows. 

 
|𝜓⟩ ⊗|𝜓+⟩ = (𝛼|0⟩ + 𝛽|1⟩) ⊗

1

√2
(|01⟩ +|10⟩)

=
𝛼

√2
(|001⟩ +|010⟩) +

𝛽

√2
(|101⟩ +|110⟩).

 (21) 

Step 2. Joint measurement by Alice. 

The reason why Alice needs to do the joint measurement is that if Alice only determines message 

qubit, this quantum will collapse to |0⟩ or |1⟩. The way out of this problem is to make measurements on 

the Bell state, i.e., |𝜙+⟩,|𝜙−⟩,|𝜓+⟩,|𝜓−⟩. 

 

{
  
 

  
 |00⟩ =

1

√2
(|𝜙+⟩ +|𝜙−⟩),

|11⟩ =
1

√2
(|𝜙+⟩ −|𝜙−⟩),

|01⟩ =
1

√2
(|𝜓+⟩ +|𝜓−⟩),

|10⟩ =
1

√2
(|𝜓+⟩ −|𝜓−⟩).

 (22) 

Then we insert Equation 22 into Equation 21, by transforming the computational basis into the Bell 

basis. 

 

|𝜓⟩ ⊗|𝜓+⟩ =
𝛼

2
(|𝜙+⟩ +|𝜙−⟩) |1⟩ +

𝛼

2
(|𝜓+⟩ +|𝜓−⟩)| 0⟩

+
𝛽

2
(|𝜓+⟩ −|𝜓−⟩) |1⟩ +

𝛽

2
(|𝜙+⟩ −|𝜙−⟩)|0⟩

=
1

2
|𝜓+⟩(𝛼|0⟩ + 𝛽|1⟩) +

1

2
| 𝜓−⟩(𝛼|0⟩ − 𝛽|1⟩)

+
1

2
|𝜙+⟩(𝛼|1⟩ + 𝛽|0⟩) +

1

2
| 𝜙−⟩(𝛼|1⟩ − 𝛽|0⟩).

 (23) 

In this case, if Alice does a Bell Measurement, she has the same chance to obtain every state of 
|𝜙+⟩,|𝜙−⟩,|𝜓+⟩,|𝜓−⟩. By using suitable unitary operation (see the next subsection), Alice can change 

these four measurement results to some message which can be sent by classical channels. 

 

1

2
|01⟩(𝛼|0⟩ + 𝛽|1⟩) +

1

2
| 11⟩(𝛼|0⟩ − 𝛽|1⟩)

+
1

2
|00⟩(𝛼|1⟩ + 𝛽|0⟩) +

1

2
| 10⟩(𝛼|1⟩ − 𝛽|0⟩).

 (24) 

Step 3. Unitary operation is carried out by Bob. 

Alice sends the result of the Bell measurements to Bob by classical messages. Bob can use this 

message to determine which of the quantum states is this message corresponds to. 
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|00⟩ → (𝛼|1⟩ + 𝛽|0⟩) ⇀ 𝜎𝑥 ,

|10⟩ → (𝛼|1⟩ − 𝛽|0⟩) ⇀ 𝑖𝜎𝑦,

|01⟩ → (𝛼|0⟩ + 𝛽|1⟩) ⇀ 𝐼,

|11⟩ → (𝛼|0⟩ − 𝛽|1⟩) ⇀ 𝜎𝑧.

 (25) 

By taking this operation, Bob can obtain the message qubit 𝛼|0⟩ + 𝛽|1⟩. So we have completed the 

protocol of quantum teleportation. 

3.  Controlled Remote Implementation of Operations in Three participants 

The main goal in this section is to send the unitary operation 𝑈 =⊗𝑗=1
𝑁 exp [𝑖𝛼𝑗𝜎𝑛𝑂𝑗

]  to other 

participants assisted by the controller. 

3.1.  Basic configuration 

Three participants have a configuration in Figure 3. In this case, they share the tripartite graph state 

 

Figure 3. (a) Image content is densely coded (b) for quantum invisible state transfer 

 
|ℎ3⟩ =  𝐶𝑍(𝑎,𝑏)𝐶𝑍(𝑎,𝑐)| +⟩

⊗3

= 
1

2√2
(|000⟩ +|001⟩ + |010⟩ +|011⟩ + |100⟩ −|101⟩ − |110⟩ +|111⟩)𝑎,𝑏,𝑐 .

 (26) 

3.2.  Build quantum pair 

To accomplish our goal, we implement the unitary operation 𝑈𝐶 = exp[𝑖𝛼𝜎𝑛𝐶] on system belonging 

to Charlie 

 𝑈𝑐,𝐶 = |0⟩𝑐⟨0| ⊗ 𝐼𝐶 + |1⟩|𝑐⟨1| ⊗ 𝜎𝑛𝐶 . (27) 

By insert Equation 27 to Equation 26 we can get a formula as follows. 

 

𝑆3′ =
1

2√2
(|000⟩𝑎,𝑏,𝑐⊗ 𝐼𝐶 +|001⟩𝑎,𝑏,𝑐⊗𝜎𝑛𝐶 + |010⟩𝑎,𝑏,𝑐⊗ 𝐼𝐶 +|011⟩𝑎,𝑏,𝑐⊗𝜎𝑛𝐶

+ |100⟩𝑎,𝑏,𝑐⊗ 𝐼𝐶 −|101⟩𝑎,𝑏,𝑐⊗𝜎𝑛𝐶 − |110⟩𝑎,𝑏,𝑐⊗ 𝐼𝐶 +|111⟩𝑎,𝑏,𝑐⊗𝜎𝑛𝐶)

=
1

2
|+⟩𝑎(|00⟩𝑏,𝑐⊗ 𝐼𝐶 +|11⟩𝑏,𝑐⊗𝜎𝑛𝐶) +

1

2
| −⟩𝑎(|10⟩𝑏,𝑐⊗ 𝐼𝐶 +|01⟩𝑏,𝑐⊗𝜎𝑛𝐶).

 (28) 

3.3.  Alice measurements 

Alice makes measurements. She has the same opportunity to get result |+⟩, |−⟩. Then Alice informs 

Bob of the measurement result. If she obtains the result |−⟩, then Bob performs the operation 𝜎𝑥 on 

qubit b, otherwise Bob need not perform any operation. They can obtain the stator as follows. 
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 𝑆3″ = |00⟩𝑏,𝑐⊗ 𝐼𝐶 +|11⟩𝑏,𝑐⊗𝜎𝑛𝐶 . (29) 

3.4.  Charlie measurements 

Charlie does measurements, and sends the message to Bob. To predict the result he can get, we need to 

change Equation 29 to the formula based on |+⟩, |−⟩. 

 
"

3 (| 0 |1 ) (| 0 |1 ).
C Cb C b n b C b nS I I = +   +   + −   −    (30) 

By having this state, when Charlie does the measurements, he also has equal opportunity to obtain 

the result from |+⟩,|−⟩. Then, he can send the information of result to Bob. If the result is |−⟩, then Bob 

implements the operation 𝜎𝑧 on qubit b, otherwise he does nothing. They can obtain the result as follows. 

 𝑆3 = |0⟩𝑏⊗ 𝐼𝐶 +|1⟩𝑏⊗𝜎𝑛𝐶 . (31) 

3.5.  Bob measurements and information transmit 

Bob implements the operation 𝑒𝑖𝛼𝜎𝑥𝑏   on 𝑆3 . One can show that, this is equivalent to the effect that 

Charlie implements the operation 𝑒𝑖𝛼𝜎𝑛𝑐 on his qubit C. 

 
|𝑠⟩ = 𝑒𝑖𝛼𝜎𝑥𝑏𝑆3|𝛷𝐶⟩

= (|0⟩𝑏⊗ 𝐼𝐶 +|1⟩𝑏⊗𝜎𝑛𝐶)𝑒
𝑖𝛼𝜎𝑛𝐶 |𝛷𝐶⟩.

 (32) 

In this case, Bob does the projective measurement by |0⟩ and |1⟩. Then he gives the result to Charlile. 

If the result is |1⟩, then Charlie implements the operation exp[𝑖𝜋𝜎𝑛𝐶/2] on qubit c, otherwise he does 

nothing. Then he can obtain the operation : 𝑒𝑖𝛼𝜎𝑛𝐶 . 

4.  Generalized protocol of more parties 

In this section, we generalize the protocol in the last section to the case of more parties. We shall 

implement a global two-qubit unitary gate on two distant parties controlled by different systems. The 

message is still known by the sender only. 

For simplicity we consider four parties, in which Alice is still the judge, Bob is still the sender, and 

Charlie and Daniel are the receivers, see Figure 4. Suppose the four parties share the four-qubit 

Greenberger-Horner-Zeilinger (GHZ) state 
1

| GHZ (| 0000 |1111 )
2

A B C DH H H H = +      . 

To realize this state, we need carry out three CNOT gates on parties 𝐴𝐵, 𝐴𝐶 and 𝐴𝐷, respectively, see 

Figure 5. Like the protocol in the last section, Charlie and Daniel respectively perform the controlled 

unitary gate as follows. 

 𝑈𝑐𝐶 = |0⟩⟨0| ⊗ 𝐼2 + |1⟩⟨1| ⊗ 𝜎𝑛1
, (33) 

 𝑉𝑑𝐷 = |0⟩⟨0| ⊗ 𝐼2 + |1⟩⟨1| ⊗ 𝜎𝑛2
, (34) 

where 𝐶 and 𝐷 are two parties belonging to Charlie and Daniel, respectively. Hence, they can prepare 

the following stator 

 
1 21 2 2

1 1
| 0000 |1111 .

2 2
n nS I I  =    +    (35) 

Next, Alice measures her qubit using the basis 
1

{| (| 0 |1 )}
2

 = +   of the Pauli gate 𝜎𝑥. Then 

Alice need notify Bob of the measurement result. If the result is |+⟩ then Bob does nothing, otherwise 

Bob performs the Pauli gate 𝜎𝑧. One can see that Bob, Charlie and Daniel are in the following stator of 

particle 𝑏, 𝑐, 𝑑, 𝐶 and 𝐷. 
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1 22 2 2  

1 1
| 000 |111 .

2 2
n nS I I  =   +    (36) 

Third, Charlie and Daniel measure respectively particle 𝑏  and 𝑐  using the basis {|±⟩} . Then they 

need notify Bob of the measurement result. If the results are both +  or − , then Bob does nothing. 

Otherwise, Bob performs the gate 𝜎𝑧. One can see that Bob, Charlie and Daniel are in the following 

stator of particle 𝑏, 𝐶 and 𝐷. 

 
1 23 2 2  

1 1
| 0 |1 .

2 2
n nS I I  =   +    (37) 

Fourth, Bob implements the local Pauli gate 𝜎𝑥𝑏, and one can show that 𝜎𝑥𝑏𝑆3 = (𝜎𝑛1⊗𝜎𝑛2)𝑆3. 

Hence we have 

 1 2
3 3

0 0

( )
.

! !

b

k k
x n n

k k

S S
k k

  + +

= =


=   (38) 

Equivalently we have 

 𝑒𝑖𝛼𝜎𝑥𝑏𝑆3 = 𝑒
𝑖𝛼(𝜎𝑛1⊗𝜎𝑛2)𝑆3 = 𝑆3𝑒

𝑖𝛼(𝜎𝑛1⊗𝜎𝑛2). (39) 

Finally, Bob measures his qubit using the basis |0⟩, |1⟩. Then Bob need notify Charlie and Daniel of 

the measurement result. If the result is |0⟩ then they do nothing, otherwise they perform the local unitary 

operation 𝜎𝑛1⊗𝜎𝑛2 . As a result, Bob and Charlie have implemented the global unitary gate 

𝑒𝑖𝛼(𝜎𝑛1⊗𝜎𝑛2) on their particles 𝐶 and 𝐷. 

 

Figure 4. Alice, Bob, Charlie and Daniel respectively possess the particles a,b,c and d. As the judge, 

Alice measures her qubit, and then the receiver Charlie and Daniel both measure their qubit. As a result, 

Bob, Charlie and Daniel share a stator of particle b, C and D. Then Bob can perform a local unitary gate 

containing a parameter unknown to Alice, Charlie and Daniel. It turns out that C and D are performed 

by a collective unitary gate containing the parameter. So the protocol can transmit classical messages 

confidentially by quantum means.  

 

Figure 5. The preparation of four-qubit GHZ state using one Hadamard gate and three CNOT gates. 

5.  Conclusions 

We have shown the protocol of controlled remote implementation of operations in both two and three 

participants. They show the quantum security guaranteed by the basic rules of quantum mechanics by 
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using entanglement and measurement. An open problem unsolved in this paper is to extend the results 

to controlled remote implementation of operations of many parties. Whether entanglement in this 

protocol could be decreased is also an interesting issue for the next step. 
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