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Abstract. Epilepsy is a prevailing disease that affects people from different age brackets and 

demographic backgrounds. It leads to uncontrollable onset of seizures and can result in severe 

neurological injuries. In this paper, we devised a novel seizure prediction system as a real-time 

early warning system for patients. By using real-time transmissible, portable, and wireless 

devices, we can acquire raw data from scalp electroencephalogram (EEG) without any pre-

processing for the input. After pre-processing, the data is fed into selected prediction algorithms 

based on literature review and a combination of methodologies. After times of iteration, our 

result shows a promising performance, with an accuracy rate of 100%  Bonn dataset. We further 

designed a hardware data acquisition apparatus (with our program built-in) to smooth and 

ameliorate the data acquisition process when eliminating overmuch electrodes, which may serve 

as a promising seizure onset detecting device in the new era. 
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1.  Introduction 

According to the latest update from the International League Against Epilepsy (ILAE) [1], epilepsy is 

identified by recurrent epileptic seizure symptoms due to abnormal brain activities. Epilepsy affects 

more than 50 million patients worldwide; patients may lose consciousness and go into convulsion[2]. 

More than a quarter of Grand mal seizure patients have seizure-related severe injuries that demand 

hospitalization or surgical intervention, and 30% of epilepsy patients’ seizures are uncontrollable with 

anti-epileptic drugs [3, 4]. Unpredictable seizure onset may result in social isolation and poor quality of 

life.[4] 

There are several characteristics of seizure signals: electrocerebral inactivity, spike and sharp wave 

complexes, rhythmic hypersynchrony, and a continuous discharge of polymorphic waveforms with 

variable amplitude and frequency[5]. During a seizure event, the delta (0–4Hz) and theta (4–8Hz) 

subwaves in an EEG signal exhibit high magnitude and low frequency[5].  

The video-electroencephalography (vEEG) and epilepsy monitor unit are the golden standard of 

seizure diagnosis [6]. Self-report of symptoms is not always possible because patients can only 
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recognize half of their seizure onsets[7, 8]; idiopathic epilepsy involves absence seizures in which 

patients pause their tasks and lose awareness. This method requires manual monitoring from human 

experts, which makes the process unaffordable and impractical for common households, and it makes 

the situation worsen that patients have to do the seizure monitoring test under hospitalization conditions. 

Consequently, ambulatory seizure monitoring systems with high accuracy and portability are in high 

demand. 

Currently, most ambulatory seizure monitoring systems are based on intracranial 

electroencephalography (iEEG), which requires long-term electrode implantation under the scalp that 

has many drawbacks: in the study, one-third of iEEG patients exhibited signs of procedural headaches, 

and some even suffered from device-related postoperative nausea, seroma, and device migration within 

months after implantation [9].  

Due to the inconvenience associated with vEEG and the high inflammatory responses induced by 

iEEG, there is a growing trend towards using non-invasive methods for predicting seizures, such as real-

time physiological signal monitoring wristbands and scalp EEG. These methods are safer compared to 

iEEG since it involves no surgery on patients’ skulls and patients can wear the prediction system for 

extended time periods. These methods could adapt to the high demand for wearable devices in domestic 

environments [10–13], especially for parents to monitor their children with epilepsy [14]. The wristband 

that achieved state-of-art performance is “Empatica,” which is commercially available. By monitoring 

accelerometers and electrodermal activity data, the sensitivity of correct seizure warnings can reach 

about 93% among thirty patients [15, 16]. However, non-EEG-based equipment like “Empatica” has 

reached a plateau in terms of potential enhancements and lacks the sensitivity to detect minor voltage 

fluctuations in patients with epilepsy; consequently, ambulatory scalp EEG detection system is favored 

in the literature since it includes more psychological information and make more accurate prediction.  

Though there is extensive research on using scalp EEG to conduct seizure warnings, there is still a 

bottleneck in the cost-effective and efficient EEG hardware implementation[17]. Scalp EEG is multi-

dimensioned, non-linear, and non-stationary[18], classifying them requires extraction of complicated 

information from seizure systems. Currently, deep learning models and traditional feature engineering 

are the two main genres for seizure prediction tasks[19, 20]. For deep learning models [9, 21–27], the 

advantage is that deep neural networks can automatically extract the features needed and be transferred 

to other tasks with ease. However, deep learning models need to have large datasets and human-selected 

hyperparameters[28, 29]. Even worse, the deep learning methods can be easily disturbed by unexpected 

noise, which causes the model to give wrong answers with high confidence [30]. The users of the deep 

learning algorithms, who are EEG analysts or patients, lack computer science knowledge, so they cannot 

trust the algorithms no matter how high the accuracy is. The deep learning algorithms cannot be 

interpreted by humans, which limits its usage [31]. Traditional feature engineering could also achieve 

accurate warnings. The widely used mathematically designed features in the literature include empirical 

model decomposition [32], Fourier Transform [33], wavelet transform [34–36], etc. These features are 

manually devised based on the characteristics of the task. For the long-investigated epilepsy 

classification task, there are already numerous proposed features that can separate seizure and non-

seizure data. So that the time cost for manual feature selection is decreased. Further, the change in feature 

value is meaningful and can be interpreted, because of its mathematical nature. Another benefit is that 

the dimension of the data can have a significant reduction, reducing the computational costs of seizure 

warning, and making it more suitable to be implemented in ambulatory seizure warning systems.  

As a result, this paper proposed a continuous ambulatory seizure detection system for grand mal 

seizure, incorporating previously defined mathematical features for seizure detection. The validation of 

this seizure warning algorithm proposed in this paper was conducted on public datasets. 
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2.  Methods 

2.1.  Hardware Systems 

Many hardware systems are used in the neurological data acquisition system [13, 19, 37]. In the paper, 

the wireless data acquisition apparatus is used in figure 1(c). The change of electric potential in the brain 

is gathered through a 3.5 mm signal acquisition cable (Shenzhen Setolink Electronics Co, LTD ST-EC11-

C5I). The signal is then transferred to the wireless receptor board using the convertor in figure 1(b). 

After amplification, analog input is converted to digital signals. The data is transmitted by Wi-Fi through 

a Serial Peripheral Interface[38]. The computer receptor software is used to present all the data. After 

receiving the data, the prediction application will analyze the acquired data and give users feedback on 

whether there are oncoming seizures. The flowchart of the processing model is illustrated in figure 1(a). 

The forehead electrodes will be used at the FP1 and FP2 locations, as defined in the international 10-20 

system [39]. The position of electrodes is further explained in figure 1(d).  

In the EEG signals there are artifacts, which are not generated by the brain are called artifacts. There 

are two main groups of artifacts: 1) physiology artifacts and 2) technical artifacts. The most significant 

impact on the data is the ocular signal, which has a wide frequency range, high amplitude, and significant 

impact on forebrain signal-gathering processes [40]. Besides, various muscle activity, cardiac activity, 

respiration, and metabolisms including sweating may all affect the precision of the data being gathered. 

Another potential source of error is the non-physiological artifacts, such as mechanical movements of 

cables [41], 50Hz AC electromagnetic interferences, and the distortion of data within the device.  

To remove artifacts, the data gathered from the electrodes will go through pre-processing before they 

are used as the input for the algorithms. Butterworth bandpass filters [42] are used for extracting the 

valid signals. Since the characteristic seizure waves dominantly at frequencies between 1Hz~30Hz[43], 

we set the filter range between 0.2Hz and 30Hz to remove environmental artifacts, including those 

occurring at low frequencies, such as breathing, eye movements, and arbitrary direct current offset and 

slow drifts, and at high frequencies, such as muscle contractions, stimulators, and the powerline 

interference. 

 

Figure 1. (a) The flowchart of the epilepsy prediction system. (b) The conversion board was used to 

convert the data gathered from the 3.5 mm cables to the amplifier board. (c) Picture of the amplifier 

board. (d) The location of each electrode. The two green electrodes are FP1 and FP2; the red electrode 

is the reference electrode; the large green electrodes are the ground electrodes. 

2.2.  Datasets  

In this paper, we trained the proposed model and evaluated it on the Bonn EEG time series dataset [44] 

published and publicly available on Bonn University’s Epileptology Department website [45]. The 

dataset was from surface EEG recordings from healthy volunteers and intracranial EEG recordings from 

epilepsy patients when they are having seizures or in the interictal phase. All channels are separated and 

in a random series. Each piece of recording has a duration of 23.5 seconds with a frequency of 173.61 
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Hz. All artifacts are removed by selected human experts. The pre-processing code for this research paper 

was gathered from Professor Manoosh Samiei and his lab [46]. 

2.3.  Feature Extraction 

This paper uses six features that were proposed in the literature to classify seizure and non-seizure EEG 

signals. The features included have been used in various biomedical areas, such as genetic sequence 

analysis and recognition of heart failure[47, 48], as well as epilepsy detection [49, 50]. The detailed 

definitions of these features are listed in [51]. 

- Detrended Fluctuation Analysis (DFA)  

- Petrosian Fractal Dimension (PFD) 

- Fisher Information (Fisher Info) 

- Spectral Entropy (Spectral En) 

- Hjorth Fractal Dimension (HFD) 

- Singular Value Decomposition Entropy (SVD En) 

2.4.  Seizure Importance Ranking 

A Random Forest Classifier [52] is used to compare different features’ importance scores for further 

feature selection. The importance scores are calculated from the Gini Impurity in the models. The 

detailed methods are defined in [53] 

2.5.  Model: Feature Classifications 

After the extraction of six chosen features, the data is fed into various machine learning classification 

models, such as AdaBoost, Naive Bayes, Quadratic Discriminant Analysis, Nearest Neighbours, Linear 

SVM, Radial Basis Function SVM, Gaussian Process, Decision Tree, Random Forest, and Neural 

Network. The best-performing models are decision trees, random forests, and AdaBoost.  

2.6.  Model Evaluation 

Models are evaluated based on accuracy and sensitivity [17]. 

Accuracy =  
True positive + True negative

True positive + False Negative + True negative + False Negative 
 

The confusion matrices were also included to demonstrate the performances of the model.  

3.  Results 

3.1.  Feature extraction 

The average feature values are shown in figure 2(a). There are significant differences for the features 

extracted in each group (p<.0001) tested using an independent t-test. The importance scores were 

calculated, and the Fisher Information is the most significant feature for classifications (figure 2(b)) 

3.2.  Classification and seizure warning  

The results for seizure prediction are shown in Figure 2(c). The best-performed model (AdaBoost, 

Random Forests, Decision Tree, Gaussian Process) reached an accuracy of 100% on the Bonn dataset, 

showing their capability to classify the seizure and non-seizure data. The results are higher than the other 

models using this dataset.  

We chose the AdaBoost [54] algorithm in the system because it can find flexible margins between 

margins through different classes and, thus, has a higher generalization ability. Although Decision Tree 

Classifier (DTC) [55] and Random Forest Classifiers [56] (Random Forest Classifier is an optimization 

of the Decision Tree algorithms) are among the 100% accuracy models, they are not used in the epilepsy 

warning systems because there are a few disadvantages when using a decision tree. For example, they 

are not as accurate as the other classifiers when doing other tasks. Furthermore, the success of the 
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specific DTC implementation has a significant impact on DTC performance. Since a tiny alteration to 

the training datasets may have a significant impact on the output prediction, they are typically less robust 

than other approaches. [57].  

 

Figure 2. (a) Six features extracted for the two groups of seizure patients and the comparison of the 

mean of features from seizure and non-seizure groups. (b) The importance scores were calculated from 

random forests classifiers. (c) Confusion Matrix for different classification models. AdaBoost and 

Decision Tree perfectly qualified this task with an accuracy of 100%. 

3.3.  Ambulatory seizure detection system 

The trained model is incorporated into the seizure warning application in the computer. Once a seizure 

is detected, the computer application would update the warning status as “seizure onset,” and the clients 

and their caregivers would receive notification about the seizure onset.  

4.  Discussion 

As mentioned in the literature review, there are many approaches to providing accurate seizure warning 

to patients. This study set out to address the need for ambulatory seizure warning systems and utilized 

selected algorithms to give correct predictions.  

The analysis of extracted features demonstrated that the feature extracted is significantly different, 

leading to possibilities of accurate prediction. These feature values are in line with the assumption that 

the brain exhibits randomness during normal stages and shows deterministic chaos when neurons have 

synchronized discharge [58].  

The algorithms utilized in this study offer certain benefits over other models that use the same dataset. 

While models employing wavelet decomposition have achieved accuracy rates of up to 99.1%[59], and 

those using principal component analysis have reached 98.75% accuracy[60], another model that applies 

a random forest after empirical mode decomposition has attained 99.4% accuracy[61]. Remarkably, 

Sharma’s group achieved a perfect accuracy rate of 100% using LS-SVM and fractional dimension[62]. 

However, the model presented in this study is advantageous as it requires fewer computational resources 
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than deep learning models, resulting in faster prediction speeds. The algorithm presented in this study is 

already incorporated in the continuous ambulatory seizure detection system, capable of 24-hour 

detection and processing of the data on computer-based software. 

The seizure warning system proposed in this study can increase the convenience of seizure detection 

systems because only electrodes on the forebrain (FP1 and FP2) were used to gather data. The proposed 

algorithm is computationally easier and reliable enough that could be implemented in computer 

applications. 

While our study provides promising results for the development of a new seizure prediction system, 

it is important to acknowledge its limitations. Firstly, our study was the Bonn dataset used in this study 

is relatively small (with a sample size of 500 EEG segments). Moreover, the manually-extracted features 

may not scale well for the entire epilepsy patient population [63]. Besides, the algorithms are patient-

dependent studies because of the high variability of EEG data [21]. This limits the generalizability of 

our findings and may not fully represent the diverse range of seizure patients. Future studies with larger 

and more diverse samples are needed to validate our findings and ensure the effectiveness of our 

algorithm across different populations. Secondly, our study is recruiting real patients to test the 

algorithms, and currently, the findings are not validated on human patients. The use of real patient data 

could provide a more accurate and realistic evaluation of the performance of our seizure prediction 

system. It’s crucial to note that individual differences among patients, such as variations in seizure types 

and frequencies, can significantly impact the effectiveness of seizure prediction algorithms. Therefore, 

future research should aim to test these algorithms in real-world clinical settings with actual patients. 

In the future, the system can be improved in the following aspects. Change the configuration of the 

electrode acquiring system: Gather information for the primary motor cortex, having more precise 

monitoring of the tonic chronic seizure onset. What’s more, larger datasets can be used in the future 

model, and the classification can include the pre-ictal stages.  

5.  Conclusion 

Epilepsy patients currently have a high demand for convenient devices that could notify their care-giver 

to preclude further injury and seizure-related death. This paper devised a new scalp EEE gathering 

hardware system, capable of filtering irrelevant distortion of data. Using the light-weighted design, this 

equipment would monitor seizure onset for patients with minimum burden to life, with the cost and 

easiness to use that incomparably outperform the traditional i-EEG or vEEG based seizure warning 

system. We found that using FP1 and FP2 electrode positions, scalp EEG signals could be received 

without the need for conducting resin, supporting continuous data acquisition. Secondly, to complete 

the seizure system, we combined feature extraction techniques reported in the literature, which when 

combined, could result in distinguishable classification of seemingly arduous seizure onset EEG 

classification issues. The extracted features later were inputted for several machine learning 

classification models, and the model with the highest accuracy and generalizability (AdaBoost) was 

selected for the final seizure prediction model, with an extraordinary accuracy rate of 100%, fully 

capable clinical application. The entire seizure warning and prediction systems are incorporated into the 

computer application.  

The present study highlights the need for more clinical data to validate the effectiveness of the 

research design. It is essential to gather data from FP1 and FP2 positions to improve the accuracy of 

seizure warning systems. Moreover, the availability of more data is likely to lead to new discoveries and 

improvements in seizure warning systems. 

6.  Data and code availability 

Python programming language was used to process the data. The data and code supporting this study’s 

findings are available upon reasonable request.  
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