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Abstract. Cryptography stands as an indispensable and efficient facet within the expansive field 

of information security. It offers a reliable method for ensuring the confidentiality and integrity 

of data during the complex process of information transmission between a sender and a recipient. 

Beyond this, exclusive decryption privileges are meticulously reserved for the designated 

recipient. This individual holds the exclusive authority to decipher the transmitted information, 

which has been encrypted by the key holder beforehand. This scholarly investigation introduces 

and delves into three prevalent cryptographic algorithms: RSA, El-Gamal, and Elliptic Curve 

Cryptography. It offers a discerning examination and contrast of the underlying mathematical 

challenges associated with each sophisticated method. The discourse unfolds a detailed 

comparative analysis of these three pivotal algorithms, zeroing in on their crucial aspects such 

as key size length and operational running time. The in-depth exploration within this study aims 

to shed light on the intricate workings, strengths, and potential limitations of RSA, El-Gamal, 

and Elliptic Curve Cryptography. By unraveling these aspects, the study contributes to a richer 

understanding and more informed choices in the practical application of cryptographic 

algorithms, enhancing the overarching realm of information security in an increasingly digital 

and interconnected world. 
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1.  Introduction 

Cryptography stands as an essential pillar within the domain of information security. It embodies the 

practice of intricately encoding and decoding data to ensure exclusive comprehension and manipulation 

by authorized entities during both storage and transmission. The strategic deployment of cryptographic 

protocols substantially diminishes the likelihood of unauthorized access to confidential communications, 

thereby reinforcing the privacy of users [1]. 

The escalating ubiquity of the Internet and digital devices underscores the paramount importance of 

robust information security. Cryptography emerges as a critical security mechanism, meticulously 

safeguarding message transmission, document storage, digital signatures, and certificates [2]. Its diverse 

applications steadfastly aim to bestow confidentiality, integrity, availability, and non-repudiation upon 

the information, bolstering its security across various platforms. 

The realm of cryptography bifurcates into two distinct categories: Private (symmetric) and Public 

(asymmetric) key cryptography. In a symmetric key cryptosystem, two parties employ an identical 
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shared key for both encryption and decryption processes. Conversely, in a public key cryptosystem, each 

party possesses individual public and private keys, referred to as "p" and "s" respectively. The key "s," 

known solely by the party itself, governs the decryption process, while the publicly shared key "p" 

oversees encryption. 

In a typical scenario utilizing asymmetric cryptography, if party A desires to confidentially share 

plaintext with party B, A employs B's public key alongside the plaintext to generate a ciphertext. Upon 

receipt, B employs their private key to decipher the message, ensuring secure communication without a 

shared secret key, as innovatively proposed by Diffie and Hellman in 1976 [3]. Public key cryptosystems, 

including widely utilized algorithms like RSA, ElGamal, and ECC, obviate the necessity for a secure 

channel or advance secret key sharing, offering a significant advantage over private key systems and 

diminishing the logistical and financial burdens of secret key distribution and management. This paper 

embarks on a comparative exploration of these three prominent public key algorithms, evaluating 

diverse aspects to ascertain their performance. It encompasses an overview of the three public key 

cryptosystems and introduces and compares the fundamental computational challenges for each 

algorithm, culminating in a comprehensive comparative analysis, centered on key size length and 

operational time. 

2.  Algorithmic Details 

2.1.  RSA 

In 1977, Rivest et al. presented the idea of RSA algorithm [4]. The RSA algorithm is an example of an 

asymmetric cryptographic technique that is often implemented for message encryption, decryption and 

digital signature. The provision of a digital signature via the use of the public key in the RSA encryption 

algorithm confers upon it a significant capability. The digital signature is a kind of signature that serves 

two primary purposes: firstly, to ensure that the message has been sent to the intended recipient without 

any alterations, and secondly, to offer assurance on the authenticity of the sender's identity. RSA 

algorithm is often used for the safe transmission of cryptographic keys over vulnerable communication 

channels. The method employs two keys because of its asymmetric nature. There are two distinct key 

types, public key pk and private key sk. In the cryptosystem, key pk is readily available to all individuals, 

while key sk is safeguarded in secrecy by authorised individuals. The RSA encryption algorithm is 

widely used within the electronic sector for facilitating secure online financial transactions. The detailed 

algorithms are shown below [5]: 

Key generation: 

Pick two random prime d and e, compute n = d * e and ∅(𝑛) = (𝑑 − 1)(𝑒 − 1). 

Choose an integer 𝑔 ∈ [1, ∅(𝑛) − 1] randomly, and calculate its inverse ℎ 𝑚𝑜𝑑 ∅(𝑛). 

𝑠𝑘 = (ℎ, 𝑛), 𝑝𝑘 = (𝑔, 𝑛). 

Encryption: 

Pick the message m. 

Compute the ciphertext 𝑐 = 𝑚𝑔 𝑚𝑜𝑑 𝑛. 

Decryption: 

Receive the ciphertext c. 

Compute the message 𝑚 = 𝑐ℎ  𝑚𝑜𝑑 𝑛. 

2.2.  ElGamal 

ElGamal is another widely used public-key algorithm which was first developed in 1985 by Taher 

ElGamal [6]. Compare with RSA, ElGamal is based on a different computationally hard problem and 

Diffie-Hellman key exchange [3]. It serves as an alternative to the RSA method for the purpose of public 

key encryption. ElGamal algorithm can be implemented for encryption and digital signature creation. 

The detailed algorithm for the key generation, encryption and decryption are shown below [7]: 

Key generation: 

Choose the cyclic group G and determine its generator g and group prime order p. 
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Choose value 𝑥 ∈ 𝑍𝑝 

Compute 𝑦 =  𝑔𝑥. 

sk = x, pk = y. 

Encryption: 

Pick random value 𝑥 ∈ 𝑍𝑝. 

Pick the message m. 

Compute the ciphertext 𝑐 = (𝑐1, 𝑐2) = (𝑔𝑟, 𝑦𝑟 ∙ 𝑚). 

Decryption: 

Receive the ciphertext c. 

Compute the 𝑚 =  𝑐2  ∙  (𝑐1)−𝑥  

2.3.  Elliptic Curve Cryptograph (ECC) 

The introduction of ECC was separately done by Neal Koblitz and Victor Miller in 1987 [8]. ECC is a 

cryptographic technique that converts a mathematical issue into a computer method using the finite field 

elliptic curves. To represent an elliptic curve, consider it is over a group F with a prime order q, the 

curve can be represented by the following equation [9]: 

𝑦2 = 𝑥3 + ax + 𝑏 (1) 

The value of x and y are shown as a point on the curve if they satisfy the equation. The collection of 

points on a curve is augmented by a unique point known as the point at infinity. Let A and d be a point 

and positive integer. The scalar point multiplication, which has the form d*A, is a fundamental 

component of all elliptic curve cryptosystems. 

If two parties want to use ECC, each party will choose a random integer as the private key 𝑘1, 𝑘2. 

After that, they can compute their public keys by multiply a common point 𝑃 with their private keys 

which are 𝑘1𝑃, 𝑘2𝑃. Therefore, they can share the same secret key by multiplying other side's public 

key with their own private key, which are 𝑘2𝑘1𝑃, 𝑘1𝑘2𝑃 . This process is also called 

𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑣𝑒 𝐷𝑖𝑓𝑓𝑖𝑒 𝐻𝑒𝑙𝑙𝑚𝑎𝑛  𝑘𝑒𝑦 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 (𝐸𝐶𝐷𝐻) . Another widely used ECC application is 

𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝑐𝑢𝑟𝑣𝑒 𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐸𝐶𝐷𝑆𝐴)   that can be used for the sign and verify 

processes in the cryptocurrencies like Bitcoin [10]. 

3.  Underlying Mathematical Problems 

In the asymmetric cryptography, the function that used in the algorithms should be the trapdoor function 

which should be evaluated easily and inverted difficultly without the specific information. The function 

should be the one-way unless the additional information is provided. The reliability of asymmetric 

cryptography algorithm is dependent on the computationally hard assumptions. The tasks for deducing 

the private key from associated public information are considered to be as challenging as solving a 

computationally hard problem. RSA, ElGamal and ECC are based on the different mathematical 

problems. 

3.1.  Integer Factorization Problem 

The reliability of RSA algorithm depends on the computational difficulty of the integer factorization 

problem (IFP). Suppose there is a value 𝑛 = 𝑝𝑞  which is computed by multiplying 𝑝 and 𝑞 . Value 

𝑝 and 𝑞 should be unknown primes. The hard problem is defined as the problem of finding 𝑝 and 𝑞. 

The difficulty of RSA problem should be also dependent on above problem. If there is an adversary A 

can solve IFP in polynomial time, they can break RSA as well. The adversary can use A to compute p 

and q first, then find the ∅(𝑛)  and private key. Finally, they can perform the decryption process. 

Therefore, the difficulty of IFP plays the essential role in security of RSA public cryptosystem. 

3.2.  Discrete Logarithm Problem 

In 1976, Diffie and Hellman first introduced the 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝑝𝑟𝑜𝑏𝑙𝑒𝑚  and used in the 

asymmetric cryptosystem. The reliability of ElGamal depends on DLP. Let G = <g> be a 𝑐𝑦𝑐𝑙𝑖𝑐 𝑔𝑟𝑜𝑢𝑝, 
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and a value e is in the range of group order and value d is in the group, they satisfy 𝑔𝑒 = 𝑑. The DLP 

is finding e for given group elements g, d such that 𝑔𝑒 = 𝑑. If DLP can be solved by an adversary A in 

polynomial time, the adversary can use A to calculate the value e in polynomial time, which represent 

the private key. Hence, the computational complexity associated with DLP is crucial for the security of 

ElGamal cryptosystem. 

3.3.  Elliptic Curve Discrete Logarithm Problem 

𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝑐𝑢𝑟𝑣𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (𝐸𝐶𝐷𝐿𝑃)  is an alternative version of DLP. The 

difficulty of alternative version problem is essential for the reliability of ECC. ECDLP is a 

computationally hard problem in the field of cryptography: 

Assume there is a new group G that represents the collection of elliptic curve points, a value x is in 

the range of group order, E and D are points in the group, they satisfy 𝐸 = 𝑥𝐷 . This problem is 

determining the value x from the values of E and D. 

Above problem serves as the fundamental component used in elliptic curve key generation. The 

integer x serves as the private key, while the point E functions as the public key. 

4.  Comparative Analysis 

For the key size, compared with RSA and ElGamal, ECC has the smallest key size in each security level 

shown in the table 1. This feature is also one of the primary benefits of elliptic curve cryptography (ECC) 

in comparison to other asymmetric cryptosystems. 

Table 1. Key sizes (bits) of three algorithms in each level. 

Security level RSA/EIGamal ECC 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 512 

An additional crucial aspect to assess the performance is the examination of the duration required for 

key creation, encryption, and decryption processes. In general, the ECC algorithm exhibits the shortest 

running time among the three procedures [11, 12]. In the decryption process, the disparity in running 

time between ECC and the other two algorithms is much greater compared to the encryption and key 

generation phases. As the volume of processed data rises, the difference in execution time across the 

three algorithms will become more apparent. Therefore, ECC is characterised by its use of tiny keys and 

high computational efficiency, rendering it well-suited for contemporary devices with limited processing 

capabilities, such as smart cards and IoT devices. The use of ECC has emerged as the preferred 

cryptographic method for networks and communication devices. Furthermore, it should be noted that 

the ruling time of the ElGamal encryption scheme is comparatively lower than that of RSA, because 

ElGamal technique produces ciphertext that is more complex and exhibits a slower computational 

performance due to the generation of multiple public keys throughout the encryption and decryption 

processes. One feature of this encryption method is its ability to produce distinct ciphertexts for the same 

plaintext throughout each encryption round. 

5.  Conclusion 

This study examines the efficacy of three asymmetric encryption techniques, RSA, El-Gamal and ECC. 

The cryptographic systems were evaluated based on the size of key and the running time for the key 

generation, encryption and decryption processes on the same security level. Comparisons demonstrate 

that the expense associated with transmission experiences a significant reduction in the context of 

Elliptic Curve Cryptography (ECC). Additionally, the findings also demonstrate the efficacy of ECC in 
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practical applications. In future, a potential direction for further development is involving symmetric 

schemes to obtain more comprehensive outcomes. 
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