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Abstract. Elliptic curves over Galois fields are widely used in modern cryptography. 

Cryptosystems based on elliptic curves are commonly deemed more secure than RSA for a given 

key size. However, with the rapid progress of quantum computing, the security of this traditional 

systems faces unprecedented challenge. To address this concern, this paper explores the 

resilience of a generalization of traditional elliptic curve cryptography. That is, we explore 

elliptic curves over non-prime rings (Zn), instead of fields. Elliptic curves over Zn for a 

composite integer n has been considered by researchers on information security. However, it is 

unclear how they stand against the unparalleled power of quantum computers. This article 

investigates quantum attacks on cryptosystems based on this new paradigm. The conclusion 

sheds light on the pressing and important task of searching for post-quantum cryptographic 

systems. In particular, the effectiveness of Shor’s algorithm (or its variation) on such systems is 

analyzed. 
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1.  Introduction 

Cryptography is one of the most important applications of number theory and is used today to protect 

our private information. Elliptic curve cryptography is a widely used system among the various methods. 

It has emerged as one of the most promising cryptographic systems in modern security industry due to 

its strength and efficiency [1-5]. It is especially favored for its ability to provide the same level of 

security as traditional systems, such as RSA, with much smaller key sizes [2].  

However, with the looming quantum computing breakthrough, modern cryptography faces a major 

challenge [6, 7]. Quantum computers, based on the principle of quantum physics, possess an 

unparalleled computing power that can break many classical cryptographic schemes upon which our 

daily life relies. Unfortunately, among these schemes, the usual elliptic curve cryptography is no 

exception. The widely celebrated work of Shor has made it possible to solve certain underlying 

mathematical puzzle which protects the scheme from classical computer attacks. 

However, not all hopes are lost. Conventionally, elliptic curves used in elliptic curve cryptosystems 

are defined over prime fields, such as the integer modulo a prime number Zp. Never the less, recent 

research has shown a growing interest in exploring elliptic curves defined over non-prime rings, 

specifically Zn with n not a prime number. The reason behind this exploration is both theoretical and 
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practical. Theoretically, it poses new mathematical challenges for mathematicians and computer 

scientists. Practically, they allow better felxibility in terms of finding desirable curves.  

This study delves into the quantum attacks targeting at elliptic curves over non-prime rings. Our research 

sheds light on the vulnerability and security implications in such a scenario. The key objectives of this 

article are as follows: 

To provide a user-friendly guide to classical cryptographic systems in general, and elliptic curves 

over non-prime rings in particular. This includes the mathematical background and construction 

framework.  

To analyze the current state of quantum computing and its attacks on these cryptographic systems. It 

focus on Shor’s algorithm and its effectiveness on elliptic curves.  

To assess the potential risks posed by quantum attacks specifically targeted at elliptic curves over 

non-prime rings.  The focus is on their advantages, limitations, and possible mitigation.  

2.  Overview of public-key cryptography 

The elliptic curve cryptosystem concerning this article is an example of public key cryptography. In 

public key cryptography, the sender, Alice, wants to send the recipient, Bob, a message over an unsafe 

channel, meaning that anyone can access the information they send to each other. Both Alice and Bob 

choose private keys which they encrypt and send to each other over the unsafe channel. Then they both 

use their private key and the encrypted keys they have received and get to the key 𝐾 which they can 

now use to encrypt messages. The security of these systems is based on one-way functions, which is one 

where given 𝑥 it is easy to calculate 𝑦, but given 𝑦, it is extremely difficult to find 𝑥. Examples of these 

are factoring and the discrete logarithm problem, which is calculating the logarithm of a number mod 𝑛. 

Multiplication and exponents over a finite field are easy to calculate, but there is no known algorithm to 

efficiently factor an extremely large number or find the logarithm of a number over a finite field. The 

following section outlines an algorithm to efficiently find high powers of a number.  

2.1.  Binary exponentiation 

Powers are calculated by repeatedly multiplying the number by itself, and the time complexity to 

calculate this is about 𝑂(𝑛 · log2 𝑝) . However, this can take lots of time when the power is large. 

Therefore, to quickly calculate the number 𝑎𝑛 mod 𝑝 when 𝑛 is large, one can first convert 𝑛 to base 2. 

For example, when 𝑛 = 25 , the binary representation of n would be 110012 . Therefore, one can 

represent 𝑎𝑛 as 

 𝑎110012 = 𝑎12 ∙ 𝑎10002 ∙ 𝑎100002 (1) 

one can compute this using an algorithm that starts with 𝑡 = 𝑎0 = 1 and repeatedly squares 𝑡. If the 𝑖th 

digit of the base 2 representation of 𝑛 is 1, one multiply the answer by 𝑡. Then one square 𝑡 and repeat 

the process until the power reaches 𝑛. The time complexity to calculate 𝑝𝑛 using this method is only 

about 𝑂(log 𝑛 · log2 𝑝) which is significantly faster than 𝑂(𝑛 · log2 𝑝), and the final answer is 𝑎𝑛 mod 

𝑝. One can also see that when 𝑛 is small, this optimization barely makes a difference in the time needed 

to calculate the power since the 𝑂(𝑛) complexity itself takes very little time. Therefore, to make the 

reverse problem of factoring or discrete logarithms harder, one needs to use very large numbers as 

parameters. 

2.2.  Selecting large primes 

Public key cryptosystems often use large primes as their parameters for reasons stated above. Therefore, 

in order to find large primes, one can use Fermat’s little theorem which states that for all primes 𝑝, any 

number 𝑛𝑝−1 ≡ 1 mod 𝑝. One can test if a number is prime by selecting any random number 𝑎 and 

calculating 𝑎𝑝−1 mod 𝑝, and if the result is not 1, then 𝑝 is not prime. When selecting a large prime 

several thousand bits long, one can simply randomly choose numbers of that length and test them until 

one find a number that is prime. 
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2.3.  Cryptography 

With the algorithms established above, there are two public key cryptosystems that are commonly used. 

2.3.1.  Diffie-Hellman key exchange. In the Diffie-Hellman key exchange, the sender Alice wants to send 

a message to Bob. They both pick a very large prime 𝑝 and share this with each other over the unsafe 

channel. The prime 𝑝 is public which means that anyone can have access to it. They then choose another 

number 𝑔 between 1 and 𝑝– 1 and share 𝑔 over the unsafe channel as well. The numbers 𝑝 and 𝑔 are the 

parameters to this scheme. 

Then, Alice picks another value a where 0 ≤ 𝑎 ≤ 𝑝 − 2. She keeps this value a secret and computes 

𝐴 ≡ 𝑔𝑎 mod 𝑝. Meanwhile, Bob does also choose a value 𝑏 in the range 0 to 𝑝 − 2, keeps it secret, and 

calculates 𝐵 = 𝑔𝑏 mod 𝑝. Then, Alice and Bob each send their values 𝐴 and 𝐵 over the unsafe channel, 

keeping 𝑎 and 𝑏 secret. 

Now, Alice can compute a result 

 𝑆 = 𝐵𝑎  𝑚𝑜𝑑 𝑝 (2) 

and Bob can also compute 

 𝑆 = 𝐴𝑎  𝑚𝑜𝑑 𝑝 (3) 

Since 

 𝑆 = (𝑔𝑎)𝑏 𝑚𝑜𝑑 𝑝 = (𝑔𝑏)
𝑎

 𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝 (4) 

Alice and Bob end up with the same result that no one else knows. They can then use this value 𝑆 as 

their shared key to further encrypt and decrypt messages. Although their conversation is entirely public, 

eavesdroppers are unable to get to 𝑆 = 𝑔𝑎𝑏 mod 𝑝 from only 𝑔𝑎 and 𝑔𝑏 while both Alice and Bob learn 

this value 𝑆. The security of this key exchange relies on the discrete logarithm problem discussed earlier. 

It is easy for Alice to calculate 𝑔𝑎 and 𝑔𝑎𝑏 using the exponentiation algorithm but extremely hard for 

an eavesdropper to calculate 𝑎 and 𝑏 from only knowing 𝑔𝑎 mod 𝑝 and 𝑔𝑏 mod 𝑝. 

2.3.2.  El Gamal encryption. In El Gamal encryption, the parameters are also a large prime 𝑝  and a 

number 𝑔 satisfying 1 < 𝑔 < 𝑝 − 1. Like in Diffie Hellman key exchange, Alice and Bob first agree on 

the large prime and number 𝑝  and 𝑔 . Bob then chooses a number 𝑏  satisfying 0 ≤ 𝑏 ≤ 𝑝 − 2  and 

calculates 𝐵 = 𝑔𝑏  mod 𝑝 . Bob then publishes 𝐵  and keeps 𝑏  secret, making 𝐵  a public key and 𝑏  a 

private key. 

Then, Alice will choose a random number 𝑟 from 0 to 𝑝 − 2. She will send a ciphertext to Bob for 

her message 𝑚 in the range 0 to 𝑝 − 1 by calculating the two numbers 

 𝑅 = 𝑔𝑟 𝑚𝑜𝑑 𝑝 (5) 

 𝑆 = 𝑚 × 𝐵𝑟  𝑚𝑜𝑑 𝑝 (6) 

She forms a pair using these two numbers and sends Bob the ciphertext (𝑅, 𝑆). 

When Bob receives the pair, he computes the number 

 𝑅−𝑏 × 𝑆 = (𝑔𝑟)−𝑏 × (𝑚 × 𝐵𝑟) = 𝑔−𝑟𝑏 × 𝑚 × 𝑔𝑏𝑟 = 𝑚 𝑚𝑜𝑑 𝑝 (7) 

and therefore gets to the original message 𝑚  sent by Alice. This is basically a Diffie-Hellman key 

exchange with the shared key being 𝐾 = 𝑔𝑟𝑏 = 𝐵𝑟 = 𝑅𝑏. Bob uses the public key 𝐵 from the beginning 

and Alice uses the new public key 𝑅 = 𝑔𝑟 mod 𝑝 which is chosen at random and used only for this 

instance. 

2.4.  The catch 

There are still some problems with these algorithms. Although Bob can simply publish his public key to 

everyone, a third person could also pretend to be Bob and publish their own public key. They can then 
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intercept all Alice’s messages to Bob that she encrypts using this public key. Therefore, in order to have 

a secure conversation with these public-key methods, Alice needs a channel that ensures the integrity of 

Bob’s public key. This means that it does not need to be able to keep the key secret from everyone, but 

it needs to ensure that the key does indeed come from Bob and not someone posing as Bob. Most 

methods to obtain these channels involve Alice and Bob meeting in person in advance to exchange the 

key. 

3.  Elliptic curves 

The cryptosystems this article focuses on are based on elliptic curves over finite fields. This section 

defines what elliptic curves are and introduce some operations used in the cryptosystems. 

3.1.  Elliptic curves over a finite field 

An elliptic curve over a field 𝐾 with the parameters 𝑎, 𝑏 ∈ 𝐾 that satisfy 4𝑎3 + 27𝑏2 ≠ 0 is defined as 

the point at infinity 𝑂 together with the set of all points (𝑥, 𝑦) with 𝑥, 𝑦 ∈ 𝐾 that satisfy 

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (8) 

The elliptic curve with parameters 𝑎, 𝑏 and over the finite field 𝐹𝑝 with 𝑝 elements will be denoted 

as 𝐸𝑝(𝑎, 𝑏).  

Addition of two points on an elliptic curve is computed by drawing a line through the two points, 

and the result is the third intersection between this line and the curve. For two points 𝑃 = (𝑥1, 𝑦1) and 

𝑄 = (𝑥2, 𝑦2) on an elliptic curve E, addition of 𝑃 and 𝑄 is defined as the following. If 𝑃 is equal to the 

neutral element 𝑂, then 𝑃 + 𝑄 = 𝑄 by definition of the neutral point 𝑂. If 𝑥1 = 𝑥2 and 𝑦1 = −𝑦2, then 

𝑃 + 𝑄 = 𝑂. In all other cases, 𝑃 + 𝑄 can be computed as follows. Let 𝜆 be defined as 

 𝜆 = {

𝑦2−𝑦1

𝑥2−𝑥1
 𝑖𝑓 𝑥1 ≠ 𝑥2

3𝑥1
2+𝑎

2𝑦1
 𝑖𝑓 𝑥1 = 𝑥2

 (9) 

When 𝑃 + 𝑄 ≠ 𝑂, the denominator is always nonzero and 𝜆 is always defined. The point 𝑃 + 𝑄 =
(𝑥3, 𝑦3) is defined by 

 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2 (10) 

 𝑦3 = 𝜆(𝑥1 − 𝑥3 − 𝑦1) (11) 

When the field is 𝐹𝑝, the curve does not actually look like a curve anymore. However, addition is still 

computed the same way modulo 𝑝. 

There are also some lemmas that come with elliptic curves over a finite field. For an elliptic curve 

𝐸𝑝(𝑎, 𝑏), let #𝐸𝑝(𝑎, 𝑏) denote the order (number of elements) of 𝐸𝑝(𝑎, 𝑏). From the Hasse bound it is 

known that #𝐸𝑝(𝑎, 𝑏) = 𝑝 + 1 + 𝑡 where 𝑡 is between −2√𝑝 and 2√𝑝. Schoof’s algorithm provides a 

polynomial time solution to find the order of an elliptic curve, but this algorithm is impractical for large 

values of 𝑝. However, one can easily find the order of some special elliptic curves. An elliptic curve 

𝐸𝑝(𝑎, 𝑏)  is either a cyclic group or the product of two cyclic groups ℤ𝑛1
  and ℤ𝑛2

 , where 𝑛1 · 𝑛2 =

#𝐸𝑝(𝑎, 𝑏)  and 𝑛2  divides 𝑛1  and also divides 𝑝 − 1 . The first lemma to find the order of a special 

elliptic curve is that for an odd prime 𝑝 satisfying 𝑝 = 2 (mod 3) and b satisfying 0 < 𝑏 < 𝑝, the order 

of 𝐸𝑝(0, 𝑏) is 

 #𝐸𝑝(0, 𝑏) = 𝑝 + 1 (12) 

The second lemma is that for a prime 𝑝 satisfying 𝑝 = 3 (mod 4) and a satisfying 0 < 𝑎 < 𝑝, the 

order of 𝐸𝑝(𝑎, 0) is 

 #𝐸𝑝(𝑎, 0) = 𝑝 + 1 (13) 
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3.2.  Multiplication 

Multiplying a point 𝑃 on an elliptic curve by a scalar 𝑘 is defined as adding 𝑃 to itself 𝑘 times. This can 

be computed efficiently with an algorithm similar to the algorithm for computing large powers. One first 

convert 𝑘 to base-2. Then, one repeatedly adds 𝑃 to itself using the formula described in the previous 

section to get 2𝑖 · 𝑃. One adds this to the sum if the 𝑖th digit of the base 2 representation of 𝑘 is 1. One 

will only need to repeat this process log(𝑡) times to get to 𝑘 · 𝑃, and the complexity of this algorithm is 

𝑂(log 𝑡) which is significantly faster than the original 𝑂(𝑘) time that it would have taken to add 𝑃 to 

the sum 𝑘 times. Since there is no operation to simply multiply a point by a scalar in 𝑂(1) time, the 

complexity of this is equivalent to exponentiation over a finite field. Like the discrete logarithm problem, 

this operation is also used to ensure the security of cryptosystems because it is possible to efficiently 

calculate 𝑅 = 𝑘 · 𝑃  but extremely hard to find 𝑘  from only knowing 𝑅  and 𝑃 . The best-known 

algorithms to solve the discrete log problem on elliptic curves have exponential run times, and this better 

supports the reliability of the trapdoor function on which the article is based. 

3.3.  Elliptic curve Diffie-Hellman 

The elliptic curve Diffie Hellman is like the regular Diffie Hellman in that the sender, Alice, wants to 

communicate with Bob over an insecure channel, and they use the elliptic curve Diffie Hellman over a 

prime field 𝐹𝑝. 

First, Alice and Bob agree on a set of parameters (𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), where 𝑝 is a prime, 𝑎, 𝑏 are the 

numbers that make up the coefficients of the equation of the elliptic curve 𝐸, 𝑃 is a point on 𝐸, 𝑛 is the 

order of the cyclic subgroup generated by 𝑃, and ℎ is a cofactor of the group 𝐺 on 𝐸 from which 𝑃 is 

chosen. Now, the cyclic subgroup generated by the point 𝑃 consists of the point at infinity 𝑂 all the 

points that can be written as 𝑘𝑃, where 𝑘 is a constant that satisfies 1 ≤ 𝑘 ≤ 𝑛– 1. 𝑛 should be a large 

number to make the discrete logarithm harder to solve, ℎ should be a small number, preferably 1. Often 

some organizations use curves with pre-computed parameters so that the sender and recipient do not 

have to calculate them since this can be quite time-consuming. These parameters are public and known 

by everyone. 

Now, Alice chooses an integer 𝑑𝑎 that satisfies 1 ≤ 𝑑𝑎 ≤ 𝑛 − 1 and uses it as her private key. She 

also calculates a point 𝑄𝑎 = 𝑑𝑎𝑃 which is her public key. Then Bob also chooses a private key 𝑑𝑏 and 

calculates a public key 𝑄𝑏 = 𝑑𝑏𝑃. Then Bob and Alice exchange their public keys. Note that because 

of the discrete logarithm problem, others are unable to calculate the private keys from the public keys. 

Now Bob multiplies Alice’s public key by his private key to get 𝑆 = 𝑑𝑏𝑄𝑎 and Alice multiplies Bob’s 

public key by her private key to get 𝑆 = 𝑑𝑎𝑄𝑏. These two expressions are equal since 

 𝑑𝑏𝑄𝑎 = 𝑑𝑏𝑑𝑎𝑃 = 𝑑𝑎𝑄𝑏 = 𝑆 (14) 

𝑆 is now the shared key, and a third party is unable to calculate this key because of the discrete 

logarithm problem. Alice and Bob can now use this key to efficiently communicate over the insecure 

channel. 

3.4.  El Gamal System on elliptic curves 

For the El Gamal System, the parameters are 𝑝, 𝑎, 𝑏, 𝑃, 𝑛, where 𝑝 is a prime, 𝑎, 𝑏 are the coefficients 

of an elliptic curve 𝐸 that one choose over the field 𝐹𝑝, 𝑃 is a point on 𝐸, and 𝑛 is the order of the cyclic 

subgroup generated by 𝑃. Bob now chooses a number 𝑑 as his private key and multiplies the point 𝑃 by 

𝑑 to calculate a public key 𝑄 = 𝑑𝑃 like in the Diffie Hellman key exchange. 

First, Alice maps her message 𝑚 to a point 𝑀 on the elliptic curve 𝐸 using a function 𝑓(𝑚). Then 

she chooses a number 𝑘 from 1 to 𝑛 − 1 and calculates the point 𝐶 = 𝑘𝑃. Finally, she computes another 

point 𝐷 = 𝑀 + 𝑘𝑄 Now, Alice sends the pair (𝐶, 𝐷) to Bob as her ciphertext. 

Now, Bob can decrypt the ciphertext by first computing 𝑀 = 𝐷– 𝑑𝐶. This works because 𝐶 = 𝑘𝑃 

and 𝑄 = 𝑑𝑃, so 

 𝑑𝐶 = 𝑑𝑘𝑃 = 𝑘𝑄 (15) 
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and the expressions cancel out when subtracted. Now, Bob can simply compute 𝑓−1(𝑀) to get to the 

message 𝑚. 

Note that this system is secure because in order for a third party to get to 𝑀 from knowing only 𝐷 

and 𝑘𝑃, they would need to find 𝑘𝑄 = 𝑑𝑘𝑃 which is the discrete logarithm problem. 

4.  Cryptography using elliptic curves over ℤ𝒏 

4.1.  Elliptic curves over a ring 

Now one can consider an elliptic curve over a ring, ℤ𝑛, where 𝑛 is an odd composite squarefree integer 

which means that none of the prime factors of 𝑛 have an even degree [1, 3]. This curve can be defined 

as the set of all pairs (points) (𝑥, 𝑦) ∈ ℤ𝑛
2  that satisfy 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 and also the point at infinity 𝑂, 

and is represented here as 𝐸𝑛(𝑎, 𝑏). Addition of two elements of 𝐸𝑛(𝑎, 𝑏) is defined the same as over a 

field 𝐹𝑝, where the same computations are performed over ℤ𝑛 instead of over 𝐹𝑝. 

However, there are two problems with this. The first is that division over ℤ𝑛 is not always defined. 

This is because division by an integer 𝑟 mod 𝑛 is defined as multiplication by 𝑥, the inverse of 𝑟 which 

is another integer that satisfies 𝑥𝑟 = 1 mod 𝑛. As one can see, this inverse 𝑥 only exists when 𝑟 and 𝑛 

are relatively prime to each other, and since 𝑛 is no longer a prime, there will be some numbers in the 

set ℤ𝑛 that do not have an inverse. Addition is also not always defined because as one can see from the 

previous section, calculations for the values of (𝑥, 𝑦) of the third point involves a value 𝜆 that is only 

defined when the divisor is nonzero. The second problem is that the set 𝐸𝑛(𝑎, 𝑏) is not a group. However, 

there are solutions to these problems. 

Suppose that 𝑛 is the product of two primes 𝑝 and 𝑞. One can calculate operations of an elliptic curve 

mod 𝑛 by performing the operations of the elliptic curve mod 𝑝 and mod 𝑞 separately. By the Chinese 

remainder theorem, one can then represent each element 𝑃 on 𝐸𝑛(𝑎, 𝑏) as the pair (𝑃𝑝, 𝑃𝑞), where 𝑃𝑝 is 

a point from the set 𝐸𝑝(𝑎, 𝑏)  and 𝑃𝑞  is a point from the set 𝐸𝑞(𝑎, 𝑏) . Now all the points in the set 

𝐸𝑛(𝑎, 𝑏) can be represented except for those where exactly one of the two points 𝑃𝑝 and 𝑃𝑞 is the point 

at infinity. Addition of two elements on 𝐸𝑛(𝑎, 𝑏) is also not defined when the resulting point is one of 

these points. However, when the prime factors of 𝑛  are very large, the probability of this actually 

happening is extremely small since there are lots of points total. Therefore, this problem can be 

disregarded because of its unlikeliness. 

One can solve the second problem (that 𝐸𝑛(𝑎, 𝑏) is not a group) by using the Chinese remainder 

theorem and finding a group on the elliptic curve. One can choose a point 𝑃 on 𝐸𝑛(𝑎, 𝑏) and repeatedly 

add it to itself until the result comes back to 𝑃. Then one can use all the points that can be represented 

by adding 𝑃 to itself a certain number of times, and the resulting set is a cyclic group. Now one can use 

the properties of groups on this new cyclic group and disregard the other points on 𝐸𝑛(𝑎, 𝑏) that are not 

in the group. Although it is possible to define an elliptic curve over a ring so that it is always a group, 

this would involve adding in the terms 𝑐𝑦 and 𝑑𝑥2 in the original definition of the elliptic curve, and is 

unnecessary for our purposes. 

4.2.  Cryptography 

Suppose user A wants to send user B a secret message. In order to generate a key, user A first chooses 

large primes 𝑝  and 𝑞  that satisfy 𝑝 ≡ 𝑞 ≡ 2  mod 3 and uses these to compute 𝑛 = 𝑝𝑞 , and 𝑁𝑛 =

𝑙𝑐𝑚 (#𝐸𝑝(0, 𝑏), #𝐸𝑞(0, 𝑏)), which is equal to 𝑙𝑐𝑚(𝑝 + 1, 𝑞 + 1) according to the lemma from earlier. 

Then, A chooses an integer 𝑒 coprime to 𝑁𝑛 and finds an integer 𝑑 that satisfies 

 𝑒𝑑 ≡ 1 (𝑚𝑜𝑑 𝑁_𝑛) (16) 

A’s secret keys are now 𝑑, 𝑝, 𝑞, 𝑁𝑛, #𝐸𝑝(0, 𝑏), and #𝐸𝑞(0, 𝑏), and A’s public keys are 𝑛 and 𝑒. 

Then, to encrypt a plaintext 𝑀 = (𝑚𝑥, 𝑚𝑦) that satsfies 𝑚𝑥 , 𝑚𝑦 ∈ ℤ𝑛, one assume that the point 𝑀 

is a point on the elliptic curve 𝐸𝑛(0, 𝑏), where 𝑏 is a number determined by 𝑚𝑥 and 𝑚𝑦. Now, user A 
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encypts the point 𝑀 using the public keys 𝑒 and 𝑛 with the function 

 𝐶 = 𝑒 · 𝑀 over 𝐸𝑛(0, 𝑏) (17) 

The result of this is a ciphertext pair 𝐶 = (𝑐𝑥 , 𝑐𝑦), and user A sends C to user B. 

User B can now decrypt the message using the public key 𝑛 and his secret key 𝑑 by using the function 

 𝑀 = 𝑑 ∙ 𝐶 over 𝐸𝑛(0, 𝑏) (18) 

5.  Quantum attacks 

5.1.  Shor’s algorithm  

The template is designed so that author affiliations are not repeated each time for multiple authors of the 

same affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate 

among departments of the same organization). This template was designed for two affiliations [6, 7]. 

Theorem 1. Suppose 𝑥 is a non-trivial solution to the equation 𝑥2 ≡ 1 mod 𝑁 where 𝑁 is an 𝐿 bits 

composite number and 1 ≤ 𝑥 ≤ 𝑁. One can apply 𝑂(𝐿3) operations to find one of gcd(𝑥 − 1, 𝑁) and 

gcd(𝑥 + 1, 𝑁) as a non-trivial factor of 𝑁. 

Lemma 1. Let 𝑝  be an odd prime. Let 2𝑑  be the largest power of 2 dividing 𝜙(𝑝𝛼) . Then with 

probability exactly one-half 2𝑑 divides the order modulo 𝑝𝛼 of a randomly chosen element of ℤ𝑝𝛼
∗ . 

Theorem 2. Suppose 𝑁 is an odd composite positive integer and 𝑦 is a number co-prime to 𝑁, it is 

likely that 𝑦𝑟/2 ≠ ±1 mod 𝑁, and 𝑥 ≡ 𝑦𝑟/2 mod 𝑁 is a nontrivial solution to 𝑥2 ≡ 1 mod 𝑁, 

 Pr{𝑟 is even and 𝑦𝑟/2 ≠ ±1 mod 𝑁} ≥ 1 −
1

2𝑚 (19) 

where is 𝑚 is the number of prime factors of 𝑁 and 𝑟 is the order of 𝑦.  

Theorem 1 and Theorem 2 combined develops an algorithm of reduction of factoring to order-

finding. 

a) If 𝑁 is even, return the factor 2. 

b) If 𝑁 = 𝑎𝑛 for 𝑎 ≥ 1 and 𝑏 ≥ 2, return the factor a. 

c) For a randomly chosen number 𝑥 such that 1 ≤ 𝑥 ≤ 𝑁 − 1, return gcd(𝑥, 𝑁) if it is greater than 

1.  

d) Find the order 𝑟 of 𝑥 modulo 𝑁 using order-finding 

e) If 𝑟  is even and 𝑥𝑟/2 ≠ ±1  mod 𝑁  then compute gcd(𝑥𝑟/2 − 1, 𝑁)  and gcd(𝑥𝑟/2 + 1, 𝑁) . Test 

and return if one of these is a non-trivial factor. If not, the algorithm fails. 

The goal of Shor’s algorithm is to factor any large number within a reasonable amount of time. With 

this, one is able to find the primes 𝑝 and 𝑞 the 𝑁 consists of in the elliptic curve algorithm and the private 

key 𝑑 as well. Therefore, the elliptic curve algorithm can be broken by a quantum computer in time 

𝑂(log 𝑛) and becomes no longer secure. 

6.  Conclusion and discussion 

The findings in this article are expected to contribute to the broader understanding of potential quantum-

resistant cryptographic systems and to help in developing better security measures to safeguard sensitive 

information in the post-quantum era. The exploration of elliptic curve cryptography over non-prime 

rings represents a first crucial step towards future-proofing our sensitive information against the 

incoming challenge posed by quantum computing. Although quantum computers are not developed 

enough to run Shor’s algorithm yet, they will be in the near future, and using Shor’s algorithm, it is 

possible to reverse the one-way functions that the ellpitic curves over non-prime rings rely on for their 

security. When quantum computers are fully developed, this method will be vulnerable to quantum 

attacks and therefore no longer secure. Therefore, other broader and newer ideas are essential.  

This article is not without its limitations. Firstly, this paper is based on Shor’s algorithm in quantum 

computing. As quantum information is a rapidly developing field, there might have been newer 
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algorithms or hardware beyond the current knowledge. Secondly, although the analysis of attacks on 

elliptic curves over non-prime ring is rigorous, it is only a theoretical investigation. A fully tested and 

carefully simulated computer program is beyond the scope of the article. Last but not least, all practical 

concerns such as costs and accessibility of quantum computing have been ignored. The attackers has 

been given the benefit of having the full power of quantum computing as their fingertips. This is to 

ensure the utmost security standard in our study.  

In order to future-proof sensitive information, further exploration has to be made until we achieve 

post-quantum cryptography. Post-quantum cryptography refers to cryptographic systems resistant to 

quantum computers but are themselves operating on classical computers. In order to find such systems, 

one must explore new mathematical structure and hardness assumptions able to withstand quantum 

attacks.  
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