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Abstract. The Axiom of Choice (AC), a cardinal principle in set theory, postulates that for any 

assortment of disjoint non-empty sets, it’s possible to construct a new set by selecting one 

element from each set in the collection. Using choice functions, this idea suggests that every 

collection of nonempty sets can be associated with a choice function. In the mathematical 

landscape, AC’s significance is accentuated by its extensive application in a myriad of 

mathematical deductions, marking it as a cornerstone among mathematical axioms. This study 

delves into the practical implications and applications of AC, employing rigorous analytical 

methods to investigate its vast and multifaceted influence on the broader mathematical domain. 

Key findings indicate that AC has facilitated the proof of various theorems, some of which, on 

the surface, appear unrelated. While its inception sparked considerable debates due to concerns 

over its intuitive validity, its impact on contemporary mathematics is profound. This research 

underscores AC’s central role in advancing mathematical thought, highlighting its contributions 

to both foundational theories and intricate proofs. 
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1.  Introduction 

For newcomers, this axiom might appear as unexpected as, say, the Constancy Principle of the Speed of 

Light or the Heisenberg Uncertainty Principle due to its extensive elaboration. However, such ostensibly 

trivial assumptions wield profound mathematical implications. Some of these outcomes are anticipated, 

while others catch us off guard, making them central subjects in discussions concerning the foundations 

of mathematics. A plethora of monographs has been dedicated solely to this theme, and many 

mathematical articles employ it or its equivalent. The depth of its influence is a testament to its 

foundational importance, transcending the boundaries of mere assumption to profoundly shape our 

understanding of mathematical structures. This underpins the need to approach such axioms with both 

reverence and scrutiny, for their ramifications extend far beyond their deceptively simple premises. 

2.  The Axiom of Choice Explored 

2.1.  Definition and Principles 

Given a collection of subsets symbolized by M, it’s noteworthy to mention that each subset, denoted as 

M’, contains a specific member, m′1, that inherently exists within M’. This member is not just any 

ordinary element; it stands out and is distinctively recognized as the “distinguished” element of M’. This 
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unique configuration ensures that the entirety of M is “covered” by this set of distinguished elements, 

which is represented as g. 

Now, when the largest element is designated to each pair within this setup, it inherently leads to the 

formation of diverse decision functions. The variety and inherent distinction between these functions 

become apparent. Indeed, the vast array of decision functions that emerge from such an arrangement is 

not limited. In fact, one can observe that the potential to define even more effective functions on a set H 

exists. It’s undeniably a realm that warrants deeper exploration and analysis, as indicated by the 

reference [1]. The intricacies of this system open up numerous avenues for further studies, shedding 

light on the profound interplay between elements, subsets, and their distinguished counterparts. 

2.2.  Historical Context 

The construction of a choice function for a set of real number pairs seems straightforward (selecting the 

smaller number in each pair). However, defining a choice function for the collection of arbitrary pairwise 

sets of real numbers remains elusive [2]. 

The introduction of Zermelo’s axioms in 1904 encountered significant skepticism among 

mathematicians. A primary concern was the perceived abstract nature of the axioms: they posited the 

feasibility of making unlimited “choices” without any specification of the method for these selections 

or the exact definition of the choice function [3]. In response to these critiques, Zermelo released two 

pivotal papers in 1908. The first reconstructed the Axiom of Choice (AC) in a transfinite form, while 

the second highlighted additional assumptions required to finalize the proof of the well-ordering theorem 

(1908a). Using these assumptions, an explicit axiom system for set theory was introduced. As debates 

about the Axiom of Choice intensified, its centrality in proving several vital mathematical theorems 

became evident. This significance prompted many within the mathematical community to embrace it as 

an indispensable tool. For instance, Hilbert perceived the AC as a foundational element of mathematics, 

defending conventional mathematical logic against intuitive detractors. The epsilon calculus entry 

suggests that its ε operator essentially acts as a selection function [4]. Despite the evident utility of the 

Axiom of Choice, reservations about its soundness persisted. Its propensity to yield counterintuitive 

outcomes only fueled these doubts. The demonstration by Kurt Gödel, which showcased the consistency 

of AC with other set theory axioms, didn’t conclusively address its soundness concerns until the 1930s. 

2.3.  Independence and Consistency 

Fraenkel established AC’s independence from a set theory framework comprising “atoms” in 1922. A 

pure individual, or an entity without members but different from the empty set, is what is meant when 

we refer to something as an atom in this context. As a result, an atom is not a set. 

It is now possible that, for a given element x∈V (A), assigning the elements of the subset A to any 

π∈G is sufficient to fix x. 

Now imagine that A has been divided into a set P of pairs that are mutually exclusive and (necessarily 

infinite). Consider G to be the collection of A permutations that fix each pair in P. Then it can be 

demonstrated that Sym(V) does not contain a choice function on P because P = Sym (V). Since f is a 

choice function on P and f∈Sym (V), let’s assume that [5]. 

2.4.  Broad Applications 

The Well-Ordering Theorem, proposed by Zermelo in 1904 and 1908, posits that every set can be 

properly ordered [6]. Once Zermelo’s 1904 proof of the well-ordering theorem from AC was introduced, 

it became clear that the two are equivalent. 

Another historical counterpart to AC is The Multiplicative Axiom, introduced by Russell in 1906. 

Early implications of AC include: 

⚫ For every infinite set, there exist countless subsets. The remaining axioms of set theory necessitate 

this principle for proof, making it weaker than AC. 

⚫ The square of any infinite cardinal number is determinable. Tarski, in 1924, established this to be 

identical to AC. 
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⚫ Every vector space possesses a basis [Hamel, 1905]. Blass, in 1984, affirmed this to be equivalent 

to AC. 

⚫ Each field has an algebraic closure [Steinitz, 1910]. This statement is a weaker consequence of 

the (weaker) compactness theorem for first-order logic [7]. 

⚫ Nonmeasurable real numbers according to Lebesgue exist [Vitali, 1905]. This turned out to be a 

weaker outcome of BPI (to be discussed) and thus not as strong as AC. Its independence from 

the other axioms of set theory was confirmed by Solovay in 1970. 

Mathematical equivalents of AC encompass: 

⚫ According to Tychonov’s Theorem (1930), the union of compact topological spaces is compact. 

Kelley, in 1950, demonstrated this to be on par with AC. Yet, for compact Hausdorff spaces, it 

is found equivalent to BPI [8], making it less potent than AC. 

⚫ Every distributive lattice features a maximal ideal. Klimovsky in 1958 and, for lattices of sets, 

Bell and Fremlin in 1972, validated this as being on a similar plane as AC. 

⚫ Any commutative ring with an identity has a maximal ideal. This was established to align with 

AC by Hodges in 1979. 

Specifically, some mathematical outcomes of AC known to be less potent include: 

⚫ Due to its equivalence with BPI, this is considered less forceful than AC. 

⚫ Its equivalence with BPI was ratified in Henkin 1954, thus positioning it below AC. 

⚫ An intriguing question in this domain remains whether this is on the same footing as AC. While 

it evidently infers BPI, its independence from BPI was noted by Bell in 1983. 

⚫ Numerous theorems of this nature are explored in detail by Bell and Machover (1977). 

3.  Unraveling the “100 Prisoners Problem” 

The Banach-Tarski paradox often arises as a primary counterargument when discussing the validity of 

the Axiom of Choice. Yet, those deeply invested in the subject seldom express major concerns. To 

understand the defense of the Axiom of Choice, one might consider the logical conundrum of prisoners 

and hats. 

Imagine a line of 100 prisoners, each facing forward, thus only able to see those ahead. A warden 

assigns a black or white hat to each prisoner. Starting from the last prisoner in line, the one with the 

view of all others ahead, each is asked to guess the color of their own hat. Prisoners can hear the guesses 

and outcomes of those behind them. Freedom awaits the correct guessers. So, what’s the optimal strategy, 

given they can pre-arrange it? 

Addressing the core challenge, the last prisoner in line faces a 50% guess rate, as personal hat color 

remains unknown [9]. Yet, this position allows for a unique opportunity to convey information. 

Instead of merely indicating the hat color of the next person, consider if the last prisoner counts all 

visible white hats. If the number is odd, “white” is called out, if even, “black”. The next prisoner, upon 

counting visible white hats and comparing with the initial call, can discern their own hat color [10]. 

4.  Interlinkages: AC and the “100 Prisoners Problem” 

4.1.  Extensions of the “100 Prisoners Problem” and the Theoretical Convergences 

This enigma presents a scenario where there exists a countably infinite number of captives, all facing in 

the positive direction along the natural numbers. This orientation offers an infinite view of fellow 

inmates to each captive. Once hats are placed, each prisoner faces questioning regarding the hue of their 

headwear. The challenges amplify, given the captives cannot discern the accuracy of prior estimates nor 

hear them. One might surmise, upon initial contemplation, that strategizing is futile. This is primarily 

because no individual with insight into another’s hat color can relay that knowledge, leading to a 

presumption of pure speculation. Yet, astonishingly, a vast majority can achieve freedom, with only a 

minimal fraction at risk. Interestingly, if a broader spectrum of hat colors existed, the challenge would 

diminish. The subsequent individual could ascertain their hat shade by subtracting the observed 
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cumulative colors from the color announced by the initial individual. This logical progression would 

facilitate the release of all except the primary individual. 

However, this advantage doesn’t extend to the innumerable inmates in this conundrum. Hindered by 

an inability to capitalize on shared intel due to not hearing previous guesses, the path appears more 

convoluted. A potential approach involves shifting the perspective: converting white to 1 and black to 

0. In doing so, the infinite sequence of 1s and 0s could provide a mirrored reflection of the headwear. 

Once positioned and adorned with hats, each captive might discern an affiliation to a specific 

equivalence class, save for a finite subset. Subsequently, a guessing technique might be employed as if 

pre-selected for that equivalence set. How effective is this approach? Beyond a predetermined number 

of entries, these selections seem to converge. This is because both the actual sequence and the proxy 

elements chosen via the choice axiom find themselves in harmony. After an initial series of errors, a 

sense of mystique surrounds the correct deduction of the hat shade. Attempts to amplify the complexity 

of this puzzle don’t negate this solution, emphasizing its resilience. Even with knowledge of this 

approach and the sequence choices, one might ensure a sizeable finite number go astray, but never an 

infinite group. In a dual-color scenario, pinpointing a hat’s hue becomes more conceivable, even 

consecutively for a sequence. Yet, when the range of hat colors becomes infinite, any choice seems a 

game of chance. The accuracy of an initial guess would indeed be baffling, as rationally, such a hit 

appears improbable. 

4.2.  Inherent Limitations 

Gödel’s groundbreaking work in set theory is anchored in the concept of definability. Drawing 

inspiration from the cumulative type hierarchy, he introduced an innovative hierarchy known as the 

constructible hierarchy. This hierarchy laid down a structured framework for understanding sets and 

their properties, differentiating them based on their ‘constructability.’ This approach presented sets in 

stages or levels, similar to a step-by-step layering, much like how one would build a structure brick by 

brick. Each level or stage is characterized by its unique properties, rules, and limitations. This 

constructible hierarchy, while novel, offered a fresh perspective on the relative consistency of the Axiom 

of Choice with the axioms of set theory. Through this, Gödel was able to provide compelling insights 

into the nature of mathematical truth and the limits of formal systems. His work showcased not only his 

mathematical prowess but also his philosophical depth, as he delved deep into the foundational issues 

surrounding mathematics. The exploration of such a hierarchy reshaped the discourse in set theory and 

remains a testament to Gödel’s genius. 

5.  Conclusion 

In conclusion, the Axiom of Choice stands as a pivotal focal point within the mathematical realm, 

sparking over a century’s worth of debates and inquiries. Its undeniable strength has paved the way for 

the construction of a myriad of significant mathematical entities and proofs. However, this axiom is not 

without its quirks. Some of its outcomes deviate sharply from intuition, leading certain mathematicians 

to approach it with skepticism, if not outright rejection. Despite these contentious viewpoints, the Axiom 

of Choice continues to command attention in contemporary mathematical discourse. Its intrigue lies not 

only in its existing applications but also in the vast expanse of unresolved questions and conjectures it 

beckons scholars to explore. Delving deeper into this fundamental axiom invariably means navigating 

its profound and sometimes perplexing implications. Such journeys promise revelations and novel 

perspectives that could invariably sculpt the trajectory of mathematical thought for generations to come. 

References 

[1] Aczel, P., & Gambino, N. (2002). Collection principles in dependent type theory. In P. Callaghan, 

Z. Luo, J. McKinna & R. Pollack (Eds.), Types for Proofs and Programs (Lecture Notes on 

Computer Science, Volume 2277) (pp. 1–23). Springer. 

[2] Howard, P., & Rubin, J. E. (1998). Consequences of the Axiom of Choice (Vol. 59). American 

Mathematical Society Surveys and Monographs. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/25/20240842

26



[3] Cohen, P.J. (1963). The independence of the continuum hypothesis I. Proceedings of the U.S. 

National Academy of Sciences, 50(1143), 1143–48. 

[4] Rubin, H., & Rubin, J. E. (1985). Equivalents of the Axiom of Choice II. North-Holland. 

[5] Bell, J.L., & Fremlin, D. (1972). The maximal ideal theorem for lattices of sets. Bulletin of the 

London Mathematical Society, 4(1), 1–2. 

[6] Post, E.L. (1953). A necessary condition for definability for transfinite von Neumann-Gödel set 

theory sets, with an application to the problem of the existence of a definable well-ordering of 

the continuum. Bulletin of the American Mathematical Society, 59(246). 

[7] Martos-Garcia, D., Devís-Devís, J., & Sparkes, A. C. (2022). Volunteering for research in prison: 

issues of access, rapport and ethics and emotions during ethnography. International Journal of 

Qualitative Methods, 21, 16094069221086096. 

[8] Diekmann, A. (2022). Rational choice sociology: heuristic potential, applications, and limitations. 

In Handbook of sociological science (pp. 100-119). Edward Elgar Publishing. 

[9] Kochenderfer, M. J., Wheeler, T. A., & Wray, K. H. (2022). Algorithms for decision making. 

MIT Press. 

[10] Fauguel, S. (2023). Male Clients’ Perspective Of Their Experience Of Counselling In Prisons 

Stephen Brian Fauguel (Doctoral dissertation). 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/25/20240842

27


