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Abstract. Machine learning is a highly effective instrument in constructing models that can 

expeditiously produce accurate prognostications. As the complexity of integrated circuit design 

continues to increase and process nodes continue to evolve, and physical design faces more 

challenges from modeling and optimization. To address these challenges, machine learning has 

been introduced into physical design. Thus, in this paper, we discuss the application of machine 

learning in physical design, covering topics such as Clock Tree Synthesis (CTS), Placement and 

Routing, IR-Drop and Static Timing Analysis (STA). The essay explores how machine learning 

can be used to overcome challenges in these areas, such as reducing peak current and clock skew 

in CTS, optimizing placement parameters and decision-making, predicting routability and 

reducing IR-drop effects. This paper also discusses various machine learning techniques (ML), 

such as reinforcement learning, convolutional neural networks and transfer learning. To conclude, 

we provide insights into how machine learning can be applied to improve various aspects of 

physical design. 
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1.  Introduction 

The integrated circuits (ICs) design process can be divided into two parts: front-end design (also known 

as logic design) and back-end design (also known as physical design). The front-end design mainly 

includes specification formulation, detailed design, Hardware description language coding, simulation 

verification, logic synthesis and static timing synthesis. The back-end design process includes Design 

for Test, layout planning, clock tree compositing, Place & Route, and physical verification of layouts. 

This paper focuses on back-end design (physical design) and static timing synthesis. 

With groundbreaking innovations in IC design and integration, some chips have up to 1.2 trillion 

transistors [1]. Moore's Law predictions over the past half-century have brought the number of 

transistors to billions, increasing design complexity, chip integration difficulty, and design effort costs. 

To overcome this challenge, electronic design and automation (EDA) vendors are beginning to introduce 
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machine learning into their products to shorten the design work time and reduce manufacturing costs 

[2]. 

Since EDA tools for ICs are a key enabler in the semiconductor industry, we present the use of 

machine learning algorithms for physical design and STAs in EDA. 

In this paper, we review some recent important studies to solve some EDA important problems by 

applying ML. By learning from the existing clock tree data, machine learning can predict the optimal 

clock tree structure to achieve the minimum clock delay and power consumption and improve the 

performance of the design. In routing placement, machine learning can quickly predict the optimal 

layout to achieve minimum power consumption and maximum performance. In IR (voltage), machine 

learning can predict the optimal power network structure by learning from the historical data of the chip 

power network to achieve minimum power consumption and maximum stability. In terms of STA, 

machine learning can quickly predict the timing performance of chips by learning from historical data 

to achieve higher design accuracy and faster design speed. The predictions conducted by machine 

learning summarized in this paper will play a greater role in ICs in the semiconductor industry. 

2.  Clock Tree Synthesis 

Clock tree synthesis is a process that distributes clock signals to clock gates in the circuit to optimize 

clock performance. However, CTS faces two significant challenges: variable effects and high-power 

consumption. Clock skew, clock jitter, clock delay, and clock load are variable effects that must be 

addressed in CTS due to their sensitivity to changes in the manufacturing process. Additionally, clock 

networks consume significant power due to their large fan-out size and switching frequency. 

2.1.  Machine Learning for the Variation Effect Synthesized by Clock Trees 

2.1.1.  Machine Learning for Reducing Peak Current. Starting all registers simultaneously causes a 

surge in battery demand current in zero clock skew, significantly increasing voltage drop and voltage 

noise, reducing transistor speed, and increasing clock jitter. To minimize peak clock current and 

minimize clock deviation simultaneously, the researchers used SARSA(State-Action-Reward-State-

Action) Q-Learning and attenuating epsilon greedy strategies to optimize the clock arrival distribution 

[3]. 

First, the researchers randomly added or removed buffers and registers to do full exploration mode, 

and then used the epsilon greedy strategy to reduce random actions. Then agents gradually change 

behavior to maximize cumulative rewards. Experimental results show that this method can significantly 

reduce the peak current and IR drop and explore the optimization opportunities in CTS more 

comprehensively than the heuristic algorithms used in existing EDA tools. 

2.1.2.  Machine Learning for Reducing Time Skew. Clock skew refers to the difference in time when 

clock signals arrive at different components, which affects circuit performance and stability. Measures 

such as adding clock buffers, optimizing clock routing, adjusting clock frequency, etc., can be employed 

to reduce the effect of clock skew.  

In this area, some researchers solve the optimization problem of highly discrete buffer and wire sizes 

of ASIC clock networks and the expensive problem of ordinary simulation of complex models of non-

tree clock networks [4]. The authors' support vector machines-based approach replaces expensive 

circuit-level simulations. In the support vector machines program, the link resistor is first removed, the 

clock network is changed into a tree network for hierarchical optimization, and then the link resistor is 

added back for new optimization in the second step. Experimental results show that this method can 

reduce clock skew by an average of 43% with a very small increase in power consumption. 
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2.2.  Machine Learning for Optimizing Clock Power Consumption 

2.2.1.  Predict Transient Clock Power with Artificial Neural Networks (ANNs). To quickly estimate the 

transient clock power consumption of buffers, clock gating cells (CGCs), and flip-flops before CTS, the 

researchers trained four different ANNs to estimate the number of CGCs and clock buffers and their 

respective wire loads, and to identify the gated or ungated state of each CGC, then calculate the power 

consumption with Pclk = C×V²×F, where C is clock load capacitance, V is clock voltage and F is clock 

frequency. The results show that the average error between the actual clock power consumption curve 

and the predicted curve is only 2%. However, the clock buffers and CGCs used in the simplified model 

is single and the generalization ability is not strong enough [5]. 

2.2.2.  Predict Clock Power with Convolutional Neural Networks (CNNs). The training objectives, input 

elements and estimated power of the model in the literature are similar to those in the literature, but 

ANNs are replaced by CNNs in the algorithm [5,6]. Although CNN's training time and calculation cost 

are higher and overfitting problems may occur, they can handle more complex clock tree structures. The 

model uses CTS pre-netlist and layout diagram to plan the image, uses CNNs to estimate the parameters 

of the clock tree network, and further enhances CNN network by K-means clustering and Linear 

programming optimization. 

2.3.  Machine Learning for Overall Optimization of CTS 

To optimize CTS from an overall perspective, the researchers propose a universal CTS framework 

consisting of four models: First, a location feature extractor using CNNs (ResNet-50 pre-trained) and 

transfer learning. Second, a regression model using clock power consumption, clock line length, and 

maximum clock deviation is realized to describe the optimized clock tree. Third, an adversarial learning 

generator to optimize and classify CTS through strategy gradient reinforcement learning. Fourth, an 

adversarial learning monitor using a previously trained regression model [7]. The specific process from 

feature extraction to the establishment of an adversarial learning model to predict CTS outcome and 

success is shown in Figure 1. 

 

Figure 1. An overview of this general CTS framework [7]. 

The framework significantly improved prediction error, clock power consumption, clock line length, 

and maximum deviation, and attained a high score of 0.952 in the CTS success and failure classification 

task. 

3.  Placement and Routing  

Placement is a crucial stage in IC design flow and also an important part in physical design, which refers 

to the allocation of the logic components, including circuits based on logic gates and blocks which are 

functionally required in the chip into the physical layout of the chip. Whether the quality of placement 

is excellent and closely related to the logic interconnects and the geometric position of the logic 
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components. Since the quality of the layout scheme can only be accurately evaluated after routing, the 

feedback loop in the design process is long. Therefore, modern industry has some requirements for 

placement and routing that are improving routability while reducing congestion in routing.  

Routing is also a time-consuming stage of the chip design flow. In this stage, the logic components 

and functional blocks assigned in the placement step will connect with each other rationally. Routing is 

closely linked to placement, and a good routing solution improves chip area utilization, timing 

performance, and routability. 

3.1.  Machine Learning in Placement 

Traditional Placers Enhancement: Nowadays, for large-scale optimization problems, many studies 

traditional placers enhancements mentioned in the latest studies focus on using Central Processing Units 

(CPUs) for a large number of numerical calculations, and do not delve into Graphics Processing Units 

(GPUs). However, the exploration of GPUs will break through existing research results. The thought 

that the placement problem in an analytical way is pretty similar to the process of building a neural 

network model is the inspiration of DREAMPlace, which is based on an advanced analytical placement 

algorithm [8]. DREAMPlace uses the toolkit PyTorch in deep learning to achieve crucial operators of 

hand-optimized, which is over 30* speed up compared with tools based on CPUs. Moreover, 

reinforcement learning (RL) could also be used to optimize the placement parameters in EDA tools. 

Agnesina presents the framework based on RL that RL trains an agent and adjusts parameters 

autonomously [9]. 

Placement Decision Making: The generalization ability could be enhanced using learning-based 

approaches that apply RL. DeepPlace integrates RL with a cell placer based on the gradient to complete 

the placement of macros and standard cells. To have a better bridge between placement and routing, 

DeepPR based on RL is invented to achieve both placement and routing goals [10]. 

3.2.  Machine Learning in Routing 

Learning-aided Routability Prediction: The routing design in the stage of placement requirement is 

under consideration. However, much research focuses on overcoming the problem that it is tough to 

predict routing design and information correctly and quickly in placement. Optimizing the prediction of 

congestion count and location could reduce turnaround time in the design process [11]. 

Reinforcement Learning for Routing: Reinforcement learning is an effective method to handle 

problems in the routing stage, because it also is seen as a procedure containing a decision-making 

process. Generally, RL deals with violations of design rules in standard cell routing that are included in 

initial routing choices generated by a genetic algorithm [12]. 

4.  The IR-Drop 

IR(Voltage) drop is a phenomenon in integrated circuits that causes voltage fluctuations in power and 

ground networks. The allocation of power supply within a chip is attained via the Power Delivery 

Network (PDN) [13]. The PDN's metal layers are inherently subject to resistivity constraints. The flow 

of current throughout the PDN results in a voltage decline in accordance with Ohm's law, whereby the 

magnitude of voltage reduction is defined as V=I.R.  Due to technology scaling, chip functionality is 

significantly impacted by even the slightest drop in supply voltage [14]. Therefore, IR drop analysis has 

become an indispensable procedure in chip signoff.  

There are two main types for IR drop analysis: static IR drop and dynamic IR drop. Static IR drop is 

predominantly attributed to the voltage division of metal interconnects within the power network, 

consequent to their inherent resistance. A voltage decrement is observed as electrical current courses 

through the internal power interconnects. Consequently, the Static IR drop is substantially dependent on 

the configuration and specifics of the power network. Thus, the Static IR drop primarily takes into 

account the influence of resistance and scrutinizes its ramifications. Dynamic IR drop is a voltage 

deviation that arises from current fluctuations during circuit switching. This occurrence is observed at 
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the trigger edge of the clock. The clock edge transition not only induces a significant number of transistor 

switches but also triggers modifications in combinational logic circuits. 

4.1.  Vectored IR-Drop Analysis 

Vectored IR-drop analysis is used to verify power integrity in a chip's power delivery network. The 

extensive runtimes associated with dynamic IR-drop analysis necessitate reducing the number of test 

patterns to a subset of IR vectors representing worst scenarios. One of the vectored methods is a machine 

learning-based method called ML-Aided Vectored IR-Drop Estimation and Classification (MAVIREC) 

for vector-based dynamic IR drop estimation, which evaluates the power integrity of a power delivery 

network that is integrated on a chip [15]. Unlike the traditional slow heuristic method, MAVIREC 

leverages machine learning techniques for fast analysis and recommends a larger subset of test patterns 

that exercise worst-case scenarios. MAVIREC profiles 100K-cycle vectors in under 30 minutes and 

offers enhanced coverage and precision recommendations, surpassing contemporary industrial flow. 

MAVIREC's IR drop predictor shows a 10X speedup with under 4mV RMSE (Root Mean Square Error) 

[15]. 

4.2.  Vectorless IR-Drop Analysis 

Vectorless IR-drop analysis is a valuable approach utilized in analyzing power integrity of an on-chip 

power delivery network without using simulation patterns from value change dump (VCD) files [16]. 

This stands in opposition to the approach of vectored IR-drop analysis, which necessitates a considerable 

quantity of simulation patterns to encompass the full range of conceivable situations. 

The vectors IR drop analysis approach has been regarded as the preferred method for mitigating IR 

issues during physical design. This is primarily due to its relatively faster and earlier estimation 

capabilities, which are of utmost importance, especially for large chipsets. Vector-based analysis, on the 

other hand, can be significantly sluggish and prone to inaccuracies, given the inherent complexities 

involved in obtaining precise power simulation patterns in the early stages of the design process [17]. 

5.  Static Timing Analysis  

STA is a technology used to check whether the design meets the timing rules required for the operation 

of the final product correctly. In the field of electronic design, timing analysis is a crucial step, which 

helps to ensure that the design meets high-speed signal processing requirements. By establishing a 

database of inputs and analyzing these inputs, STA can ensure that the design's timing meets 

specifications, thereby avoiding potential performance issues. During the course of time-sequence 

analysis, the design undergoes multiple versions of change. STA tools recalculate the timing of the 

design each time a design change is made, and check for potential time violations. These time violations 

may be caused by various factors, such as improper circuit layout, changes in component performance, 

and variations in load. In order to ensure the corrective measures in the design, STA tools re-run the tool 

several times after each design change to check for potential time violations. In summary, STA is an 

important tool that helps ensure electronic design projects' correctness and reliability. Using STA, 

designers can avoid performance bottlenecks and system failures caused by timing issues. 

5.1.  Machine Learning for Reducing Signal Delay 

The on-chip power supply variation has become a dominant factor influencing the circuits' signal delay. 

In the literature, they proposed an efficient STA method [18]. By utilizing the spatial correlations of IR-

drop, they can consider on-chip power supply varying in the STA. To be specific, they first identified 

the characterization of voltage-delay properties. Then they extracted the correlation between IR-drop 

and Distance by conducting IR-drop. As a result, they constructed the table, including the relationship 

between distance and the delay variation caused by IR-drop. Finally, they perform STA considering on-

chip variations. In the experiments, the nominal path delay was calculated by Spice simulation. Then, 

the nominal delay of the capture path was multiplied with the corresponding derating factor (with respect 

to R-drop) to obtain the path delay with on-chip power supply variations. They use STA to evaluate the 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/28/20230384

148



accuracy of the proposed method by comparing the relative delay between capture and launch paths to 

the criterion ratio, they specified. During STA, they found that compared with the traditional practical 

method, this method reduced the extra design margin (pessimism) of the traditional method and 

improved the accuracy of calculating the path delay ratio. 

5.2.  Machine Learning for Speeding Up Timing Closure 

The automatic timing closure solution for relatively timed circuits is presented in the literature [19]. 

Using ML techniques, we can achieve the goal of timing closure for relatively timed circuits. Using 

iterators and features can significantly accelerate the development process and minimize the overall 

runtime. Using the elements generated by the model-driven hardware generator framework and will use 

it to reason the inference of the testing set generated by the physical system. We will also extract the real 

labels of delays, waveforms, and their interdependence to better understand and analyze these systems' 

behaviors. In literature, placement stage timing and physical information are extracted as sequence 

features during placement stage, while the residual path delay modeled to verify the mismatch routing 

path delays [20]. 

6.  Conclusion 

There are lots of research in the field of using ML methods to optimate physical design in IC flow, which 

is a high-demand industry. Because the rapidly rising complexity and ultra-high level of integration in 

physical design, efficient methods based on ML that could reduce the processing time and improve the 

accuracy of prediction are needed. In summary, this paper shows insight into the advanced methods of 

using ML algorithms for physical design in IC flow. As mentioned before, the methods that have been 

developed could reduce peak current and clock skew in CTS, optimize placement parameters and 

decision-making, predict routability and reduce IR-drop effects. Although breakthroughs have been 

made, we still expect more achievements on applying ML for physical design. For example, it is still 

hard for only using ML algorithms to fulfill the demands in real application. Therefore, the combination 

of modern methods and the traditional method is of great significant. Current ML methods aim to solve 

simplified problems and always be restricted in some small spaces. However, advanced algorithms 

researchers are working on are supposed to make ML methods more useful. 
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