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Abstract. Let φ denote Euler’s Totient function. There are some properties about φ(n), when 

n is a prime or n = p1
r1 ⋯ pk

rk
. The Euler’s function equation, kφ(n) = n − 1(1), where k is a 

positive integer, and n  is a composite number, is called Lehmer’s conjecture. Lehmer 

mentioned a series of properties of n that satisfy the equation in his own thesis and provided 

some proof. Afterwards, Ke Zhao and Sun Qi conducted further research. In previous studies, 

this conjecture was considered correct, but it is difficult to prove it. The case k = 2 has been 

discussed and proved that when k = 2 and n = p1p2,... pi are different prime numbers. Also, 

some properties of the composite numbers that satisfy the equation have also been proven. 

Some conclusions can be proven, by using elementary number theory methods. Using these 

conclusions, we can conclue that when k=2, the solution of (1) is at least the product of 12 odd 

prime numbers. 

Keywords: Number Theory, Euler Totient Function, Lehmer’s Conjecture 

1.  Introduction 

Euler Totient Function, φ(n), is a number theory function defined on positive integers. For a positive 

integer n, the number of positive integers (including 1) that are less than or equal to n and are coprime 

with n is written as φ(n). About the Euler Totient Function (Unless otherwise specified below, φ(n) 

only refers to Euler Totient Function), some related equations have been proposed and discussed the 

solutions of these equations which is a significant topic in elementary number theory. Besides, around 

φ(n), there have been rich conclusions and put forward many conjectures with contributions. 

In 1932, Derrick Henry Lehmer proposed a conjecture that no composite number satisfies φ(n) ∣
n − 1. In other words, for each positive integer k, kφ(n) = n − 1 has no solutions. In Lehmer’s thesis 

[1], if n is a solution of (1), then n is a prime or the product of seven or more distinct primes. In 1963, 

K. Zhao and S. Qi proved that such a composite number n is at least the product of 12 different odd 

prime numbers [2]. Moreover, in 1980, Cohen and Haggis further proved that it is a product of at least 

14 different odd prime numbers. In 2009, William D Banks and Florian Luca proved that such an n is 

at most x1/2/(logx)1/2+o(1)  as x → +∞ . Unfortunately, there is still no definitive answer to this 

question, but the academic community has come up with many reasonable conclusions. This article 

will discuss some n properties that can be derived from this equation and briefly discuss the case 

where k = 2. 

This article will summarise some previous methods and use elementary methods to draw some 

conclusions for the case of k = 2. 
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2.  Properties of 𝐧 which satisfies the Equation 

2.1.  Readiness Knowledge 

There are some basic theorems about Euler functions. [2] The Euler function is denoted by φ(n). 

Theorem 1. Let the standard decomposition formula of n be: n = p1
r1p2

r2 ⋯ p
ark, then, 

φ(n) = n (1 −
1

p
1

) (1 −
1

p
2

) ⋯ (1 −
1

p
k

) (1) 

To prove Theorem 1, it is needed to prove some inferences and theorems. Intuitively, the 

correctness of this theorem is obvious. For example, let n be 24 = 3 ∗ 23, the reduced residue system 

(1 ≤ r ≤ n)  is {1,5,7,11,13,17,19,23} , hence φ(24) = 8 , and using the formula above, φ(24) =

24 (1 −
1

2
) (1 −

1

3
) = 8. However, to prove this theorem, some pre-conclusions are needed. Here are 

two lemmas given without proof. 

Lemma 1. Let n ≥ 1, then: 

∑ φ

( d∣∣n )

(d) = n (2) 

Lemma 2. Let(m, n) = 1,  T1 : = {t1: t1 ∣ m},  T2 : = {t2: t2 ∣ n} , then T = {t1t2: t1 ∈ T1, t2 ∈ T2} 

includes all the factors of mn. In other words, T = {t: t ∣ mn}. 

Then there is the theorem: 

Theorem 2. Let(m, n) = 1, then φ(mn) = φ(m)φ(n). 

Proof. Let ℎ = mn , using induction method: if ℎ = 1 , it is obvious; suppose that if ℎ =
1,2, ⋯ , nm − 1 , the conclusion is valid, let t|nm, t = t1t2, t1|m, t2 ∣ n , by the assumption above, 

except for t1 = m, t2 = n, the equation φ(t1t2) = φ(t1)φ(t1) holds. 

Hence, by Lemma 2, 

∑

( t1∣∣m )

φ(t1) ∑ φ

( t2∣∣n )

(t2) = ( ∑ φ

( t∣∣mn )

(t) − φ(mn)) + φ(m)φ(n) (3) 

From Lemma 1, mn = (mn − φ(mn)) + φ(m)φ(n), which is equivalent to φ(mn) = φ(m)φ(n). 

So, Theorem 1 can be proved. 

The proof of Theorem 1. From Theorem 2, 

φ(n) = φ(p
1

α1) ⋯ φ(p
k

αk). (4) 

Then, it is just needed to prove φ(pα) = pα − pα−1. From the definition of φ(n), φ(pα) = pα −
∑ ii∈I , I = {i ∣ i and p are mutually prime } = {i ∣ i is a multiple of p}. At the same time, the number of 

multiples of p from 1 to pα is pα−1, hence φ(pα) = pα − pα−1. 

Meanwhile, here is another theorem. 

Theorem 3. 

1.Let (m, n) = d, then φ(mn) = φ(m)φ(n) ⋅
d

φ(d)
. 

2. If a ∣ b, then φ(a) ∣ φ(b). 

Proof. (1) 
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φ(mn)

mn
= ∏ (1 −

1

p
)

( p∣mn )

=
∏ (1 −

1
p

)( p∣m ) ∏ (1 −
1
p

)( p∣n )

∏ (1 −
1
p

)
( p∣∣

∣(m, n) )

=

φ(m)
m

φ(n)
n

φ(d)
d

(5) 

Thus φ(mn) = φ(m)φ(n)
d

φ(d)
. 

(2) Let b = ac, from (1), φ(b) = φ(ac) = φ(a)φ(c)
d

φ(d)
= dφ(a)

φ(c)

φ(d)
, where (a, c) = d. 

Since d ∣ c,
dφ(c)

φ(d)
=

c ∏ (1−
1

p
)p∣c

∏ (1−
1

p
)p∣d

 is an integer(because the factors of c include the factors of d). Hence 

φ(a) ∣ φ(b).3 

2.2.  Lehmer’s Conjecture 

There has been systematic research in the academic community on the properties of Euler Totient 

Functions and their divisibility with some other functions. In 1932, an American mathematician, 

Derrick Henry Lehmer, supposed a conjecture: 

Proposition 1. There is no composite number n such that: 

φ(n) ∣ n − 1.  

As mentioned earlier, it is tough to solve this problem completely, but some n properties can be 

obtained. Firstly, in case k = 1, it is evident that n satisfies (1) is equivalent to n is a prime. Thus, 

consider k as an integer greater than 1 in the following discussion. 

Theorem 4. Let k ≥ 2, kφ(n) = n − 1, then: 

1. n is the product of different odd prime numbers. 

2. If odd prime p satisfies p ∣ n, then n does not contain prime factors in the form of pt + 1. 

3. If k ≢ 1( mod 3), then n ≢ 0( mod 3). 

Proof. Since k ≥ 2, then n > 2, and since 2 ∣ φ(n), so 2 ∤ n; if prime p ∣ n, n has prime factors 

with the form pt + 1  or p2 ∣ n , p ∣ φ(n) , thus p ∣ n − 1  (because kφ(n) = n − 1) , and it is 

impossible. So, the first and the second conclusion can be proved. 

When k ≡ 0( mod 3), the conclusion is right. When k ≡ 2( mod 3), if n ≡ 0( mod 3), assume 

n = p1 ⋯ ps, p1 = 3, p2, ⋯ ,  ps are different odd prime numbers. Thus, 

2k ∏(pj − 1)

s

j=2

= 3 ∏ pj

s

j=2

− 1, 

And from conclusion 2, pj ≡ −1( mod 3), and module 3, then: 

1 ≡ 2( mod 3), 

And it is impossible. 

Thus: 

Inference 1. If n satisfies (I) and n = p1 ⋯ ps, then: 

φ(n) = ∏(pi − 1) (6)

s

i=1

 

Proof. Obviously. 

First, discuss a simple case where k = 2 and n is the product of two prime numbers: 

2φ(n) = n − 1. 
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It is equivalent to: 

2(p
1

− 1)(p
2

− 1) = p
1
p

2
− 1,

p
1
p

2
− 2(p

1
+ p

2
) + 3 = 0

(p
1

− 2)(p
2

− 2) = 1.

 

Thus, p1 = p2 = 3  is impossible because pi  are different prime numbers. Similarly, it can be 

proved that when n = p1p2p3, no n satisfies 2φ(n) = n − 1. 

Moreover, here is another theorem proved by K. Zhao [3]. 

Theorem 5. Let n satisfy (1) and n = p1 ⋯ ps, then: 

k < ∏
p

i

p
i

− 1

s

i=1

(7) 

Proof. From (1) and Inference 1: 

k ∏ pi

s

i=1

− 1 = ∏ pi

s

i=1

− 1 

Thus, 

k = ∏
pi

pi − 1

s

i=1

− ∏
1

pi − 1

s

i=1

< ∏
pi

pi − 1

s

i=1

. 

By theorem 5, it can be directly obtained: 

Inference 2. If n = p1 ⋯ ps, s ≤ 11 is a solution of (1), then k = 2 or k = 3. 

Proof. From (2), 

k < ∏
p

i

p
i

− 1

s

i=1

≤
3

2
⋅
5

4
⋅

7

6
⋅
11

10
⋅
13

12
⋅

17

16
⋅

19

18
⋅
23

22
⋅
29

28
⋅

31

30
⋅
37

36
< 4 

 

Thus, k = 2 or k = 3. 

Through a proof process and calculation process similar to the above proof, the following theorem 

can be proved: 

Theorem 6. If k = 2, the solution (1) is at least the product of 12 odd prime numbers. 

3.  Conclusion 

When k = 2, the solution of (1) is at least the product of 12 odd prime numbers. Using computers, it 

can be reached that when k = 2, the solution is at least the product of 14 or more prime numbers. 

Unfortunately, it is not easy to push the conclusion to positive infinity, to completely solve the 

conjecture, in addition to the methods of elementary number theory, some analytical methods of 

number theory are necessary. William D Banks and Florian Luca’s thesis [4] proved that #L(x) <<

x1/2logx3/4 ., where L(x)  is the solution set of (1) , which provides a significant method of 

researching this problem. Meanwhile, G Tenenbaum provided some relevant research on analytical 

number theory [5]. 
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