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Abstract. This article aims to establish the comprehensiveness of the Dirac equation as an 

effective modification of quantum mechanics for the analysis of electrons and atomic fine 

structure. The Dirac equation is applied to investigate two scenarios involving electron 

interactions with different potentials. In the case where ϕ = 0 , the Dirac equation aligns 

naturally with electron theories and yields an electron gyromagnetic factor of 𝑔𝑠 = 2 . With 

additional radiative corrections, it is possible to bring this value into closer proximity to 

experimental results. On the other hand, when considering spin-orbit coupling within a central 

field of 𝑉 = −𝑒2 𝑟⁄ , the spin-orbit Hamiltonian derived from the Dirac equation is shown to 

match calculations based on Larmor and Thomas interactions. These cases collectively 

demonstrate the superior utility of Dirac’s theory when dealing with spin-1/2  particles like 

electrons, underscoring Dirac’s historical success in addressing the complexities of the time. His 

achievements in elucidating atomic fine structure and spin-orbit coupling hold pivotal 

significance for advancing technologies rooted in these theories. However, it is important to note 

that the Dirac equation primarily remains valid in weak external field situations, as observed in 

electron orbital motion, while challenges persist in unifying it with general relativity in stronger 

external field contexts.  

Keywords: Electron and spin, Atomic fine structure, Dirac Equation, Spin-orbit coupling, 

Gyromagnetic factor. 

1.  Introduction 

In 1887, Michelson and Morley identified the fine structure spectral lines [1]. However, this result does 

not coincide with the Bohr model of atom.  Scientists have published their own revisions to quantum 

physics, which was still an incomplete discipline at that time. However, the contribution of Paul Dirac 

is the one mainly focused on this article. “The new quantum mechanics, when applied to the problem of 

the structure of the atom with point-charge electrons, does not give results in agreement with experiment” 

[2], said Paul Dirac, in the opening of his article The Quantum Theory of the Electron. The stationary 

states of an electron in atom were observed to be twice the number of that predicted by the theory 

considering electron as a point-charge.  Dirac referred to it in his article by stating that, the discrepancy 

was created by the incompleteness of the previous theories lying in their disagreement with relativity. 

In his idea and as he proposed in his article, the simplest Hamiltonian for the electron would satisfy both 

relativity and general transformation theory and can solve all the duplexity phenomena without further 

assumptions. Nowadays, the extra energy levels observed were known to be caused by spin-orbit 

coupling, a relativistic-phenomenon between the spin of electron and its orbit around a nucleus. While 
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this phenomenon was unknown to the world until 1928, it has become very popular in advanced 

investigation in not only the field of Quantum physics, but also in the field of materials, etc. For example, 

the research in spin-orbit coupling discovers the topological surface states, which can be applied to spin 

batteries [3]. In addition, research also indicates that when the tunnel barrier height is appropriately 

matched, the tunnel junction’s electrical conductivity exhibits a significant switching effect, [4] which 

would be beneficial for developments in electronics.  

This article will provide a concise examination of the contributions made by Dirac’s theory to the 

refinement of atomic structure. To elucidate further, the paper will initially introduce essential 

terminologies such as electron, atomic structure, and spin-orbit coupling, followed by a derivation of 

Dirac’s equation. Subsequently, the article will delve into the application of Dirac’s equation to address 

the problem. In conclusion, the article will assess both the merits and constraints of Dirac’s theory.  

2.  Terminology and Theory 

There are several important subjects in the article. They will be comprehensively described here to avoid 

complicated explanation in the later sections of this article. 

2.1.  Electrons, Spin, and Spin-Orbit Coupling 

Electron is one of the most familiar fundamental particles in the Standard Model. Being different from 

photons which are classified as Bosons in the standard model, electrons, together with quarks, are 

Fermions, which are half-integer spins instead of integer spin like bosons does. Having negative one 

elementary electrical charge enables electrons to be attracted by atom nucleus and orbit around it. As 

mentioned in the above lines, electrons have half-integer spin, 1/2-spin specifically. Spin is an intrinsic 

property possessed by elementary particles, and thus the composite particles such as atom nuclei, 

hadrons, etc. Literally, it would be misinterpreted as a rotating inertial mass, but it is in fact a quantized 

wave property. Spin was firstly inferred from Stern-Gerlach experiments, in which the sliver atoms were 

found to have two discrete angular momenta after passing through an inhomogeneous magnetic field, 

even though the atoms have no angular momentum in the first place [5]. In Figure 1, the pattern pointed 

by number 4 is the classical prediction. However, what obtained is the pattern pointed by 5. 

 

Figure 1. Simplified Display of Stern-Gerlach Experiment Setup 

Atomic structure describes the orbits of electrons around the nucleus. Bohr’s quantized energy levels 

of orbiting electrons only makes up the Gross Structure of atom. In a more precise model, the Fine 

Structure, the spin of electrons is considered, resulting in splitting the gross structure spectral lines. In 

Figure 2, the two peaks demonstrate the split of electron energy in Chlorine 𝑝  orbit, resulting in a 

splitting of the original energy state. The phenomenon is called the spin-orbit coupling. 

As mentioned above, spin-orbit interaction is considered in the fine structure model of atomic 

structure. It is a relativistic effect which the spin of the electron is interacting with the magnetic field 

created by positively charged nucleus, breaking the degeneracy of gross structure energy levels. This 

interaction arises in fine structure but not in gross structure because only electric potential energy is 

considered. However, in the fine structure, the nucleus is moving and a moving charge at speed v with 

electric field 𝐸 creates magnetic fields 𝐵 =
−𝑣×𝐸

𝑐2 . With additional energy levels, spin-orbit interaction 

has its own Hamiltonian 𝐻̂𝑠−𝑜 as a perturbation to the original Hamiltonian. From the perspective of 

magnetic field and the physical relation behind it, 𝐻̂𝑠−𝑜 can be directly derived as follows. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/30/20241085

134



  

Figure 2. Energy splitting of electron caused by spin-orbit coupling in chlorine 𝑝 orbit [6]. 

Given the gyromagnetic factor 𝑔𝑠, which is an add-on numerical relation, the Bohr magnetic, which 

is μ𝐵 =
𝑒ℏ

2𝑚𝑒
 , and the magnetic dipole moment, which is proportional to spin, the magnetic dipole 

moment for electron is 

μ =
−𝑒

2𝑚𝑒
⋅ 𝐿 = 𝑔𝑠 ⋅

−𝑒

2𝑚𝑒
⋅ 𝐿 = −𝑔𝑠 ⋅ μ

𝐵

𝐿

ℏ
(1) 

Turning the angular momentum of an electron into an operator would give the spin operator 𝑠̂ and 

the above relation would become 

𝜇̂ = −𝑔𝑠 ⋅
𝜇𝐵𝑠̂

ℏ
≈ −2𝜇𝐵

𝑠̂

ℏ
(2) 

In Eq. (2), the −2  comes from the approximation of gyromagnetic factor 𝑔𝑠 ≈
2.00231930437378(2)  [7]. Now the spin-orbit Hamiltonian can be calculated by concerning both 

Larmor interaction 𝐻̂𝐿 and Thomas interaction 𝐻̂𝑇. 

Firstly, for Larmor interaction, the Hamiltonian can be written as 𝐻̂𝐿 = −μ̂𝐵 ⋅ 𝐵. In this equation, 

magnetic field is given as B = −
𝑣×𝐸

𝑐2  . The dot product here implies that the energy depends on the 

alignment between the magnetic dipole moment and the magnetic field. To obtain the relation of 𝑣 and 

𝐸 , rearranged equation of P = 𝑚𝐸 ⋅ 𝑣  and E = |𝐸| ⋅
𝑟

𝑟
  are used, and therefore𝐵 = −

𝑃

𝑚𝑒
× 𝑟 ⋅

𝐸

𝑟
⋅

1

𝑐2 =

𝑟×𝑃

𝑚𝑒𝑐2 ⋅ |
𝐸

𝑟
|. Since electric field strength 𝐸 and electric potential V has relationship: 𝐸 = −∇𝑉. In addition, 

a central field approximation can be used for an electron in hydrogen atom. Therefore, |𝐸| can be written 

as |E| = |
∂V

∂r
| =

1

e

∂U(r)

∂r
 . Therefore, the magnetic field now changes to B =

1

𝑚𝑒𝑐2⋅𝑒
⋅

1

𝑟
⋅

∂𝑈(𝑟)

∂𝑟
𝑙 . By 

substituting 𝐵 into 𝐻̂𝐿, the Hamiltonian for Larmor interaction is given by 

𝐻̂L = −μ̂ ⋅ 𝐵 ≈ −2μ
𝐵

𝑠̂

ℏ
⋅

1

𝑚𝑒𝑐2𝑒
⋅

1

𝑟
⋅

∂𝑈(𝑟)

∂𝑟
⋅ 𝑙 (3) 

Now the Thomas interaction 𝐻̂𝑇  is considered, which gives the relation of 𝐻̂𝑇 = Ω𝑇 ⋅ 𝑠̂ . In this 

relation, Ω𝑇 = −ω(γ − 1). ω is the angular frequency of the electron and γ is the Lorentz factor. By 

putting the conditions of an electron in hydrogen atom into the equation gives 
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𝐻̂T = Ω𝑇 ⋅ 𝑠̂ =
−μ

𝐵

4𝑚𝑒𝑒𝑐2
⋅

1

𝑟
⋅

∂𝑈(𝑟)

∂𝑟
⋅ 𝑙 ⋅ 𝑠̂ (4) 

Finally, the total spin-orbit Hamiltonian constitute of these two interactions, which gives the equation 

as 𝐻̂𝑠−𝑜 = 𝐻̂𝐿 + 𝐻̂𝑇. Therefore, by adding them together and approximate the gyromagnetic factor to 2 

gives 

𝐻̂𝑠−𝑜 = 𝐻̂𝐿 + 𝐻̂𝑇 ≈
μ

𝐵

ℏ𝑚𝑒𝑒𝑐2

1

𝑟

∂𝑈(𝑟)

∂𝑟
⋅ 𝑠̂ ⋅ 𝑙 (5) 

For a hydrogen atom, the electric potential is 
𝑒2

𝑟
. In this case, the spin-orbit Hamiltonian is in its 

complete form: 𝐻̂𝑠−𝑜 =
𝑒2

2𝑚𝑒
2𝑐2𝑟3 ⋅ 𝑠̂ ⋅ 𝑙. 

2.2.  Theories and Dirac Equation 

For a free particle, the Dirac equation can be written in the form of [8] 

𝑖ℏ
∂|Ψ⟩

∂𝑡
= (𝑐α ⋅ 𝑃 + β𝑚𝑐2)|Ψ⟩. (6) 

It can be proven by starting from Free-Particle Schrodinger Equation, which is 

𝑖ℏ
∂|Ψ⟩

∂𝑡
=

𝑃2

2𝑚
|Ψ⟩ (7) 

To be consistent with relativity, the Hamiltonian 𝐻̂ should follow the energy equation from relativity, 

which is 𝐸 = √𝑐2𝑝2 + 𝑚2𝑐4 . Therefore, 

𝐻̂ = (𝑐2𝑝2 + 𝑚2𝑐4)
1
2 (8) 

Therefore, Eq. (7) would be changed to 𝑖ℏ
∂|Ψ⟩

∂𝑡
= (𝑐2𝑝2 + 𝑚2𝑐4)

1

2|Ψ⟩. However, this equation is 

undesired because space and time is treated asymmetrically, which can be shown by expanding the right-

hand side of this equation in momentum basis:  

𝑖ℏ
∂|Ψ⟩

∂𝑡
= (𝑐2𝑝2 + 𝑚2𝑐4)

1
2|Ψ⟩ = 𝑚𝑐2 (1 +

𝑝2

2𝑚2𝑐2
−

𝑝4

8𝑚4𝑐4
+ ⋯ ) . (9) 

When transforming back to coordinate basis, each 𝑝2 becomes (−ℏ2∇2), which is in second order. 

While on the left-hand side of Eq. (9), the time derivative is first order. To solve this problem, Eq. (8) 

can either be squared or changed. By squaring it, the corresponding energy equation would become 

∂2|Ψ⟩

∂𝑡2 = [−
𝑐2𝑃2

ℏ2 −
𝑚2𝑐4

ℏ2 ] |Ψ⟩ . In coordinate basis it becomes [
1

𝑐2

∂2

∂𝑡2 − ∇2 + (
𝑚𝑐2

ℏ
)

2

] Ψ = 0 . This 

equation is called the Klein-Gordon equation with desired symmetry between space and time. But the 

shortcoming is also manifest: Ψ here is a scalar and it cannot describe electron. The other way is to 

change the Hamiltonian by writing the quantity in the square root as a perfect square of a quantity that 

is linear in 𝑃 . Therefore, Eq. (8) changes to 

𝑐2𝑝2 + 𝑚2𝑐4 = (𝑐α𝑥𝑃𝑥 + 𝑐α𝑦𝑃𝑦 + 𝑐α𝑧𝑃_𝑧 + β𝑚𝑐2)
2

= (𝑐α ⋅ 𝑃 + β𝑚𝑐2)
2

(10) 

In this case, α and β can be determined by expanding the perfect square and matching the left-hand 

side of Eq. (10) 

𝑐2(𝑃𝑥
2 + 𝑃𝑦

2 + 𝑃𝑧
2) + 𝑚2𝑐4 = [𝑐2(α𝑥

2 𝑃𝑥
2 + α𝑦

2 𝑃𝑦
2 + α𝑧

2𝑃𝑧
2) + β

2𝑚2𝑐4] 

                               +[𝑐2𝑃𝑥𝑃𝑦(α𝑥α𝑦 + α𝑦α𝑥) + 𝑐2𝑃𝑦𝑃𝑧(α𝑦α𝑧 + α𝑧α𝑦) + 𝑐2𝑃𝑧𝑃𝑥(α𝑧α𝑥 + α𝑥α𝑧)] 

+𝑚𝑐3[𝑃𝑥(α𝑥β + βα𝑥) + 𝑃𝑦(α𝑦β + βα𝑦) + 𝑃𝑧(α𝑧β + βα𝑧)] (11) 
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For this equation to equal 𝑐2𝑝2 + 𝑚2𝑐4, the following relation must be true: α𝑖
2 = β2 = 1,  α𝑖α𝑗 +

α𝑗α𝑖 = 0 = [α𝑖, α𝑗]
+

, and αiβ + βαi = 0 = [α𝑖, β]+, in which 𝑖 ≠ 𝑗 and 𝑖 & 𝑗 ∈ {𝑥𝑦𝑧}. In this case, the 

value of α and β can be obtained as α = [
0 σ
σ 0

] and β = [
𝑰 0
0 −𝑰

]. 

3.  Coupling Electron to a Potential 

In this section, the Dirac equation (see Eq. (6)) derived above will be used to calculate certain cases of 

potential when an electron is coupled to. In this way, two properties of electron can be shown to emerge 

very naturally from Dirac’s theory. The two properties are: 1. The value of gyromagnetic factor 𝑔𝑠 for 

electron and the spin-orbit Hamiltonian 𝐻̂𝑠−𝑜. 

To couple an electron to a potential (𝐴, ϕ), the Hamiltonian of Dirac equation should be modified to 

include potential energy and the change of kinetic energy due to the potential. Therefore, the 

Hamiltonian will be changed to 𝐻̂ = [(𝑃 − 𝑞
𝐴

𝑐
)

2
𝑐2 + 𝑚2𝑐4]

1

2

+ 𝑞. By substituting this into the Dirac 

equation would give: 𝑖ℏ
∂Ψ

∂𝑡
= [𝑐α ⋅ (𝑃 − 𝑞

𝐴

𝑐
) + β𝑚𝑐2 + 𝑞ϕ]. In this equation, the value of 𝐴 and ϕ are 

determined by each case to be analysed. 

3.1.  Gyromagnetic Factor 𝒈𝒔 

The condition for potential in this case is: ϕ = 0 and work to the order of (
𝑣

𝑐
)

2
. If the eigenstates of 

electron Ψ(𝑡) = Ψ ⋅ 𝑒−𝑖
𝐸

𝑡ℏ in this case is desired, then the energy eigenstate equation can be written as 

𝐸Ψ = (𝑐α ⋅ π + β𝑚𝑐2) (12) 

in which π = 𝑃 −
𝑞𝐴

𝑐
 is the kinetic momentum of the electron. Rearrange and expanding the matrix α 

and β in Eq. (12) would give the following equation: 

[𝐸 − 𝑚𝑐2 σ ⋅ π

σ ⋅ π 𝐸 + 𝑚𝑐2
] (13) 

In this equation, the wavefunction Ψ can be written as a matrix composed of Dirac spinors so that it 

can be expressed as: Ψ =   [
χ
Φ

]. Therefore, Eq. (13) can be written as 

[𝐸 − 𝑚𝑐2 𝝈 ⋅ 𝝅
𝝈 ⋅ 𝝅 𝐸 + 𝑚𝑐2

] [
𝜒
Φ

] = 0. (14) 

Implicating the basic matrix multiplication would give two relations: 

(𝐸 − 𝑚𝑐2)χ − 𝑐σ ⋅ πΦ = 0 (15) 

(𝐸 + 𝑚𝑐2)Φ − 𝑐σ ⋅ πχ = 0 (16) 

Rearranging Eq. (16) would give the following relation: 

(
𝑐σ ⋅ π

𝐸 + 𝑚𝑐2
) χ = Φ. (17) 

The denominator of the LHS of Eq. (17) is 𝐸 + 𝑚𝑐2 = 𝐸𝑠 + 2𝑚𝑐2, in which 𝐸𝑠 = 𝐸 − 𝑚𝑐2 is the 

energy appears in Schrodinger Equation and it also equations to 𝐸𝑠 =
π2

2𝑚
+ 𝑉 . According to virial 

theorem, 𝐸𝑠  can be approximated to 𝐸𝑠 ≈ 𝑚𝑣2 . Therefore, 
𝐸𝑠

𝑚𝑐2 ≈ (
𝑣

𝑐
)

2
≪ 1  at low velocity and the 

denominator can therefore be approximated to be 𝐸 + 𝑚𝑐2 = 𝐸𝑠 + 2𝑚𝑐2 ≈ 2𝑚𝑐2 . Therefore, 
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substituting the approximated value of the denominator into Eq. (17) would give Φ ≈
𝑐σ⋅π

2𝑚𝑐2 χ =
σ⋅π

2𝑚𝑐
χ. 

And by substituting Eq. (13) into Eq. (15) would give 

𝐸𝑠χ − 𝑐σ ⋅ πΦ = 0 (18) 

𝐸𝑠χ = 𝑐σ ⋅ π ⋅
σ ⋅ π

2𝑚𝑐
χ =

(σ ⋅ π)(σ ⋅ π)

2𝑚
χ =

(σ ⋅ π)2

2𝑚
(19) 

By using the identity: (α ⋅ 𝐴) ⋅ (α ⋅ 𝐵) = 𝐴 ⋅ 𝐵 + 𝑖σ ⋅ 𝐴 × 𝐵 and π × π =
iqℏ

c
B, Eq. (19) would be 

[
(𝑃 −

𝑞𝐴
𝑐 )

2

2𝑚
−

𝑞ℏ

2𝑚𝑐
σ ⋅ 𝐵χ] = 𝐸𝑠 (20) 

Eq. (20) describes a spin-1/2 particle with a gyromagnetic factor 𝑔𝑠 = 2. It is manifest that only the 

condition of the potential is given to the Dirac equation and the value of 𝑔𝑠 can be naturally obtained 

from Dirac’s theory. By considering the radiative corrections, experimental result from CODATA 

provides a more precise correction to 𝑔𝑠 ≈ 2.00231930436256(35)  [7]. This correction can be 

calculated by considering the relative change in the electron magnetic dipole moment in the first order 

of expansion 
δμ

μ
=

𝑔𝑠

2
− 1 =

𝑒2

2πℏ𝑐
 . By substituting 

𝑒2

ℏ𝑐
=

𝑒2

𝑒∗
2  [9], where 𝑒∗  is the coupling charge, 

δμ

μ
=

1

2π

𝑒2

𝑒∗
2 =

α

2π
. In this equation, α =

𝑒2

𝑒∗
2 =

1

137
 is the fine structure constant. Therefore, 

𝑔𝑠

2
− 1 = 0.001162, 

which gives 𝑔𝑠 = 2.002324. Utilizing a higher order of expansion would yield a significantly more 

accurate alignment with the experimental value. 

3.2.  Spin-Orbit Coupling revisited 

The condition for the spin-orbit interaction of an electron in a hydrogen atom is: 𝑉 = 𝑒ϕ =
−𝑒2

𝑟
, which 

is a typical central field. In this case, the proton is approximated to be fix and it is infinitely massive 

compared to the mass of an electron. For this case, an energy eigenstate equation is also desired. 

Therefore, like the writing of Eq. (12), the energy eigenstate equation can be written as (𝐸 − 𝑉)Ψ =
(𝑐α ⋅ 𝑃 + β𝑚𝑐2)Ψ in this case. In the same way, this equation can also be separated into two relations 

of Dirac spinors χ and Φ [10]: 

(𝐸 − 𝑉 − 𝑚𝑐2)χ − 𝑐σ ⋅ 𝑃Φ = 0 (21) 

(𝐸 − 𝑉 + 𝑚𝑐2)Φ − 𝑐σ ⋅ 𝑃χ = 0 (22) 

Eq. (22) can be rearranged to the form of Φ =
𝑐σ⋅𝑃

𝐸−𝑉+𝑚𝑐2. Substituting Φ in Eq. (21) can give 

(𝐸 − 𝑉 + 𝑚𝑐2)χ = 𝑐(σ ⋅ 𝑃) ⋅
𝑐σ ⋅ 𝑃

𝐸 − 𝑉 + 𝑚𝑐2
. (23) 

By approximating 𝐸 − 𝑉 + 𝑚𝑐2 ≈ 2𝑚𝑐2 would only give the typical Schrodinger equation in the 

form of 𝐸𝑠χ = (
(σ⋅𝑃)2

2𝑚
+ 𝑉). This is because the approximation is made under the circumstance of low 

speed, which is just the non-relativistic conditions. To further calculate and obtain the Hamiltonian in 

the energy eigenstate equation, 
1

𝐸−𝑉+𝑚𝑐2 is expanded. Thus, 

1

𝐸 − 𝑉 + 𝑚𝑐2
=

1

2𝑚𝑐2 + 𝐸𝑠 − 𝑉
=

1

2𝑚𝑐2
(1 +

𝐸𝑠 − 𝑉

2𝑚𝑐2
)

−1

≈
1

2𝑚𝑐2
(1 −

𝐸𝑠 − 𝑉

2𝑚𝑐2
) (24) 

and 
1

𝐸 − 𝑉 + 𝑚𝑐2
≈

1

2𝑚𝑐2
−

𝐸𝑆 − 𝑉

4𝑚2𝑐4
. (25) 
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Therefore, substituting this expansion into Eq. (23) gives 

𝐸𝑠χ = [
𝑃2

2𝑚
+ 𝑉 −

σ ⋅ 𝑃(𝐸𝑠 − 𝑉)σ ⋅ 𝑃

4𝑚2𝑐2
] , (26) 

which is obviously not an energy eigenstate function because the energy term 𝐸𝑠 appears at both side of 

the equation. Hence, to eliminate 𝐸𝑠, (𝐸𝑠 − 𝑉)σ ⋅ 𝑃 is expanded as 

(𝐸𝑠 − 𝑉)σ ⋅ 𝑃χ = σ ⋅ 𝑃(𝐸𝑠 − 𝑉)χ + σ ⋅ [𝐸𝑠 − 𝑉, 𝑃] = (σ ⋅ 𝑃)
𝑃2

2𝑚
χ + σ ⋅ [𝑃, 𝑉] (27) 

Substituting the expanded form into Eq. (26) gives the energy eigenstate equation desired: 

𝐸𝑠χ = {
𝑃2

2𝑚
+ 𝑉 −

𝑃4

8𝑚3𝑐2
−

𝑖σ ⋅ 𝑃 × [𝑃, 𝑉]

4𝑚2𝑐2
−

𝑃 ⋅ [𝑃, 𝑉]

4𝑚2𝑐2
} χ = 𝐻̂χ. (28) 

In this way, the total Hamiltonian for an electron in hydrogen atom is obtained in the energy 

eigenstate equation for this case. Notice that there are five terms in the Hamiltonian and each of them 

have their own contribution. Firstly, 
𝑃2

2𝑚
 is in a very typical form and it contributes to the kinetic energy. 

Secondly, 𝑉  is the term that contributes to the potential energy. Thirdly, −
𝑃4

8𝑚3𝑐2  is the relativistic 

correction to the electron kinetic energy due to the high travelling speed of electron in this case. Fourthly, 

−
𝑖σ⋅𝑃×[𝑃,𝑉]

4𝑚2𝑐2  is the spin-orbit Hamiltonian term. It can be expanded as: −
𝑖σ⋅𝑃×[𝑃,𝑉]

4𝑚2𝑐2 = −
𝑖σ⋅𝑃×[−𝑖ℏ∇(

−𝑒2

𝑟
)]

4𝑚2𝑐2 =

−ℏ𝑒2σ⋅𝑃×𝑟

4𝑚2𝑐2 =
ℏ𝑒2

4𝑚2𝑐2𝑟3 σ ⋅ 𝑟 × 𝑃. Therefore, 𝐻̂s−o =
𝑒2

2𝑚2𝑐2𝑟3 ⋅ 𝑠̂ ⋅ 𝑙. In this expansion, with the properties 

of 𝑟 × 𝑃 = 𝐿 and σ =
2𝑠̂

ℏ
, it is manifest that the obtained spin-orbit Hamiltonian is the same as the one 

derived previously. Finally, −
𝑃⋅[𝑃,𝑉]

4𝑚2𝑐2 is known as the Darwin term. 

4.  Conclusion 

In this article, Dirac equation is utilized to solve for two cases of potential coupled which electron is 

coupled to, aiming to prove the comprehensiveness of Dirac equation as a modification of quantum 

mechanics for electrons and atomic fine structure. In the case of ϕ = 0, the Dirac equation is found to 

be naturally fits the electron theories and gives an electron gyromagnetic factor of 𝑔𝑆 = 2. Considering 

first order radiative correction to it, 𝑔𝑠 can be in closer proximity to the experimental value, giving 𝑔𝑠 =
2.002324 . On the other hand, when considering the spin-orbit coupling with a central field of 𝑉 =

−𝑒2 𝑟⁄ , the obtained spin-orbit Hamiltonian from Dirac equation is the same as the one calculated from 

the physical relations considering Larmor and Thomas interaction. These two cases show the superiority 

of Dirac’s theory dealing with spin-1/2 particles such as electron and the success of Dirac in solving 

the duplexity at the time. The achievement of Dirac in explaining atomic fine structure and spin-orbit 

coupling is crucial for the development of corresponding technologies using these theories. As an 

illustration, investigations into spin-orbit coupling have unveiled topological surface states that have 

potential applications in spin batteries. Furthermore, studies have revealed that by precisely aligning the 

height of the tunnel barrier, significant switching effects in the electrical conductivity of tunnel junctions 

can be achieved, a finding with promising implications for advancements in the field of electronics. The 

Dirac equation, while consistent with the principles of special relativity, demonstrates limited 

applicability in the presence of strong external fields, making it only valid in weak external fields 

situations, such as the electron’s orbital motion around a nucleus. Furthermore, it remains incongruent 

with the broader framework of general relativity. Thus, efforts are still required to solve the challenge 

of unifying quantum field theory with the principles of general relativity. 
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