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Abstract. This study examined the causal effect of the Early Childhood Longitudinal Study, 

Kindergarten Class of 1998–1999 (ECLS-K) program on students’ academic achievements in 

math. Moreover, factors heavily impacting students’ fifth grade math score are also explored. 

The result indicates that the ECLSK program has insignificant negative impact on student’s math 

score. Kindergarten math score, fine motor skill and gender are top three positive factors and 

child’s age at k entry, ECLS training program, attended head start are top three negative factors. 

These results provide a framework for educators to help children improve their math score. 

Keywords: Rubin Causal Model, Bayesian Additive Regression Tree, Machine Learning, 

ECLS-K dataset. 

1.  Introduction 

In the past several decades, researchers have witnessed a methodological renaissance that makes 

problem-solving of complex tasks possible. Methods like causal inference have been applied at different 

aspects of educational research. In this article, we will explore the topic of educational effectiveness 

research, which investigates all academic and social development factors affecting the learning 

outcomes of students, via causal inference and different regression methods. In particular, we will 

address (1) causal effect of ECLS program on students’ fifth grade math score and (2) factors heavily 

impacting students’ fifth grade math score. We begin by reviewing four fundamental causal inference 

frameworks, machine learning in causal inference and the dataset our study is based on in section two. 

We then describe the methodology in section three, which are the propensity score matching as causal 

inference tool and three machine learning algorithms, linear regression (LP), multilayer perceptron 

(MLP) and Bayesian Additive Regression Trees (BART), as regression tools. We finally present and 

discuss results in section four. 

2.  Literature review 

In this section, we first overview four fundamental casual inference frameworks. In particular, we 

describe the major parts of each framework and list some of recent works that base on these frameworks. 

Then we talk about how traditional machine learning methods are applied in context of causal inference 

by discussing some typical causal machine learning models. And finally, we give a brief introduction to 

the dataset that is used in this paper. 
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2.1.   Casual inference 

Causality helps scientists understand response of a dependent variable when a cause of the effect 

variable is changed. There are two main conceptual frameworks to tackle casual inference problems, 

which are causal diagrams and counterfactual models. 

A causal diagram is a directed graph which reflects the causal relationship among variables. The idea 

is firstly proposed by Judea Pearl, which aims to show how graphical models serve as a mathematical 

language for interpreting statistical information [1]. A causal diagram includes a bunch of nodes, which 

represent different variables under consideration, and arrows, which represent potential causal effects 

of parent nodes on their children node. The direction of arrow indicates the direction of causality. The 

path is the traversal of casual diagram according to the casual arrow direction. There are mainly two 

types of causal diagrams – causal loop diagrams and directed acyclic graphs. Each one of them serves 

for different purposes. The causal loop diagrams are cyclic directed diagrams, which visualize dynamic 

system’s structure and behavior. Two basic types of causal loops are always examined – reinforcing and 

balancing. Reinforcing loop indicates the change in one direction accumulates more change in that 

direction and balancing loop means the opposite – change in one direction triggers change in the opposite 

direction. By determining the loops are reinforcing or balancing, one could quickly draw conclusion the 

behavior of the system over time, such as how different variables are interrelated in a dynamic system. 

Some work [2,3] utilize causal loop strong capability to capture the relationships within a system’s 

structure to decompose and simplify complex problems. Directed acyclic graphs is complement part to 

causal loop diagrams, which lacks the cycle in the system. The intuition of using directed acyclic graphs 

(DAG) to explore causal inference is that, in some case, causality assumes events could only affect the 

future rather than the past and thus lack the causal loops. Compared with its companion causal loop 

diagrams, directed acyclic graphs is a simpler version of casualty representation in diagram and is 

suitable to determine if a given pair of variables are independent. Some work [1, 4] use DAGs as a tool 

to figure out and address potential source of confounding and selection bias in causal inference.  

Causal graphs are convenient for displaying qualitative interrelationship among variables. If precise 

quantitative deductions are needed, method like potential-outcome model [5], which is sometimes called 

counterfactual model, is an option. The framework of potential-outcome, which is the foundation of the 

Rubin Causal Model (RCM) [6], estimates the quantitative results based on whether the individual 

receives the treatment. A set of potential outcomes that could be observed in alternative states of the 

world, which are counterfactual, helps deducing the causal effect of that particular treatment. Since 

causal effects on individuals could not be observed directly, the inferential goal of estimating the 

treatment effect is at the population level, by taking the average, rather than at the individual unit. Two 

causal assumptions are required to make RCM work properly, which are strong ignorability and stable 

unit treatment value assumption (SUTVA). Strong ignorability is mathematically formulated as 

{𝑌(0), 𝑌(1)} ⫫  𝑍 | 𝑋, where 𝑌(𝑖) is a potential outcome given treatment t, 𝑋 is some covariate and 𝑍 

is the actual treatment. This assumption says that the potential outcomes are independent of treatment 

assignment conditioned on observed covariates 𝑋. The SUTVA, on the other hand, holds when the 

treatment status of any unit does not affect the potential outcomes of other units and the treatment for 

all units are comparable. In other word, the SUTVA requires the outcome of a particular unit depends 

only on the treatment to which the unit was assigned, not the treatments of other units. Some work [7, 

8] designed different matching mechanism to make assignment process as independent as possible and 

thus reduce selection bias. If the two conditions are fulfilled, the expected value of causal effect could 

be approximated by expected outcome of treatment group minus expected outcome of control group.     

In this paper, we utilize the second method mentioned above, potential outcome framework, to search 

for causal inference. In particular, we use the propensity score matching based RCM to determine to 

what extent a special program affects a primary students’ math score. The propensity score matching 

reduces the bias due to confounding variables via constructing an artificial control group by pairing 

treated and non-treated units according to their covariate similarity. Therefore, the propensity score 

matching based RCM could accurately estimates the impact of an intervention such as this special 

program. 
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2.2.   Machine learning in casual inference 

Thanks to the availability of big data, machine learning could utilize these data to perform high-

performance casual inference. Several methods utilize machine learning method to evaluate average 

treatment effect. The Causal K-Nearest-Neighborhood (i.e., CKNN) has been proposed to do casual 

discovery [9]. The CKNN method compares the causal treatment effects within near neighborhood 

which is calculated by traditional KNN rule. Causal random forest (i.e., CRF) is another way to do casual 

inference, which is built as an extension of traditional random forest [10]. Instead of repeatedly splitting 

the data in order to minimize prediction error like tradition random forest, CRF splits the data with the 

purpose of maximizing the difference across groups in terms of relationship between outcome and 

treatment variables. Causal support vector machine is also used to explore casual inference by balancing 

covariates and estimating average treatment effect [11]. The dual coefficients are applied on soft-margin 

SVM classifier as kernel balancing weights, which are used for stable casual effect estimation. Bayesian 

additive regression trees (i.e., BART), as a recently proposed regression method, plays a role in 

ensembled methods due to its advantages of finding treatment-covariate interactions and expressing 

such interactions in a flexible way [12, 13]. By constrained by regularization priors and inferenced by 

an iterative Bayesian backfitting MCMC algorithm, this BART-based approach not only explores causal 

inference in an unstructured way but also avoids the pitfalls of data dredging and multiple comparisons.  

We mention these machine learning methods only for providing additional information regarding to 

cutting-edge approaches for causal inference. In this paper, we will use the traditional RCM method 

and compare it with a basic machine-learning based method, like linear regression.  

2.3.   ECLS-K dataset 

The Early Childhood Longitudinal Studies, Kindergarten Class of 1998–99 (ECLS-K) data is a dataset 

recording children’s early school experience from a representative sample of children, which is collected 

by direct child assessment, parent interview, school administrator questionnaires and students’ record. 

The ECLS-K has two main advantage: large sample size and authority of dataset. The large sample size 

gives a better generalized estimated result on the underlying population. The authority of dataset gives 

more reliability of final result due to formal data collection instrument. Many recent papers base their 

work on the ECLS-K dataset to explore relationship among dataset’s covariates. One of them utilizes 

the data existing in current ECLS-K to explore the relative contribution of parenting behaviors to SRL 

and other student outcomes [14]. Another paper examines potential peer effects of English Language 

Learner students on their non-ELL classmates based on ECLS-K dataset [15]. Even a study utilizes 

ECLS-K dataset as evidence to disprove the statement that enrolling children in martial arts improves 

their mental health [16]. 

We study the ECLS-K dataset in order to better understand effects of different covariates on students’ 

math score. By examining these interrelationships among covariates, the researcher could help students 

who are disadvantages in math score.  

3.  Method 

This section is talking about the different methodologies that are used to analyze the ECLS-K dataset. 

The general objectives of this study are to (1) estimate average treatment effect of ECLS-K program on 

primary student’s math score and to (2) identify factors that affect primary student’s math score. In order 

to achieve the first goal, this study bases on the propensity score matching to estimate the potential 

outcome difference. In order to accomplish the second goal of finding each factor’s contribution to the 

final math score, three regression models are used to find the relationship between math score and each 

of considered factors, which are linear regression (LP), multilayer perceptron (MLP) and Bayesian 

Additive Regression Trees (BART). 

3.1.   Causal inference by RCM 

The Rubin causal model (RCM) is a non-parametric statistical framework which is widely used in causal 

inference. The RCM defines potential outcomes in terms of difference between observed and 
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counterfactual variables. Due to unobservability nature of counterfactual variables, RCM approximates 

average causal effect by all the quantities that could be observed based on the assumption that treatment 

variable assignment is random and is independent of potential outcome. The approximation is calculated 

in the following form: 

𝐴𝑇𝐸(𝑍 → 𝑌) = 𝐸{𝑌𝑖(1) − 𝑌𝑖(0)} = 𝐸{𝑌𝑖|𝑍𝑖 = 1} − 𝐸{𝑌𝑖|𝑍𝑖 = 0} (1) 

The ATE is abbreviation of Average Treatment Effect, 𝒁𝒊 is binary treatment variable of ith example. 

𝒀𝒊 is outcome variable of ith example. {𝒀𝒊(𝟏), 𝒀𝒊(𝟎)} are potential outcomes of ith example. 𝒀𝒊(𝟏) −
𝒀𝒊(𝟎)represents casual effect of ith example. The RCM has been shown that it is useful in estimating 

causal inference [17]. It has been widely used in different areas. One social study which concludes 

that the employer supplemental insurance is exogenous to the employees' medical care utilization is 

based on the RCM framework [18]. Another economical study explores the RCM usage in the context 

of econometric models [19]. 

3.2.   Regression by LR, MLP and BART 

The first model is linear regression, which assumes the relationship between dependent and independent 

variable is linear. In linear regression, linear models are applied to measure unknown model parameters. 

A particular form of linear regression depends on the nature of problem. In our problem setting, multiple 

linear regression is suitable. The general form of multiple linear regression is given by: 

𝑌 = β0 +  β1𝑥1 +  β2𝑥2 + ⋯ + β𝑘𝑥𝑘 +  € (2) 

β0 is the intercept and β𝑖 is coefficient of 𝑥𝑖. 𝑌 is the response. € is ith disturbance term. Although linear 

relationship assumption overlooks complicated joint effect of explanatory variables on final prediction, 

linear regression works well in many circumstances. Even in some complicated settings like 

observational astronomy, linear regression is preferred in measurement such as cosmic distance scale 

[20]. The second model is multi-layer perceptron (MLP), which accounts for the situation that 

relationship between dependent and independent variable is nonlinear. MLP is a fully connected class 

of ANN, which consists of at least three types of layer: input layer, hidden layer and output layer. The 

neuron in hidden and output layer uses a nonlinear activation function. The MLP learns a non-linear 

function approximator that maps input dimension to output dimension by training input dataset. The 

training uses a supervised learning technique called backpropagation and mean square error loss 

function for regression. The MLP’s mathematical formulation is shown below:  

𝑓(𝑥) = 𝑊2𝑔(𝑊1
𝑇𝑋 + 𝑏1) + 𝑏2 (3) 

𝑔(𝑧) = max(0, 𝑧) (4) 

𝑊1 , 𝑊2 are weights of input and hidden layer, 𝑥 is input, 𝑏1 and 𝑏2 are bias. The function 𝑔is ReLU 

activation function. The MLP is a very strong technique, which is able to approximate any continuous 

function in theory. Some recent work [21, 22, 23] apply MLP in complicated setting such as medical 

diagnosing system, stock price prediction and various optimization algorithm. The last model is 

Bayesian Additive Regression Tree (BART), which captures not only single variable’s main effect but 

also multiple variable’s interaction effect on final prediction. BART consists of two parts – a sum-of-

trees model and a regularization prior on the parameters of that model. Like traditional ensemble 

methods like random forest or gradient boosting machine, BART is a sum-of-trees model that regresses 

an unknown function. Each subtree in BART is a weaker learner which performs slightly better than 

random guesses. By combining these weak decision tree, BART becomes a strong learner with high 

predictive accuracy. With the purpose of alleviating the overfitting problem due to nature of ensemble 

methods, three additional regularization priors are introduced to in a such way that makes (1) depth of 

tree shallow, (2) parameter value of each learner’s terminal nodes close to 0 and (3) variance of residual 

noise small. Given the observed data and priors mentioned above, the Bayesian setup induces the 

posterior distribution that provides parameter space for backfitting MCMC algorithm [12] to get the 
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point estimate for any test data. The sum-of-trees model part can be explicitly expressed in following 

mathematical formula: 

y =  ∑ g(x; Tj, Mj)

m

j=1

+  ϵ (5) 

𝑦 is the output. x is the input. Tj denotes a binary decision tree. Mj denotes a set of parameter values 

associated with each of terminal nodes in a jth binary tree. Given 𝑇  and 𝑀 , the function 

g(x, T, M) assigns a value according to input that contributes to final prediction. ϵ is gaussian noise with 

standard deviation 𝜎 .The regularization prior is expressed as following mathematical formula under 

independent assumption: 

𝑝((𝑇1, 𝑀1), … , (𝑇𝑚, 𝑀𝑚), 𝜎) = [∏ 𝑝(𝑀𝑗|𝑇𝑗)𝑝(𝑇𝑗)

𝑚

𝑗

] 𝑝(𝜎) (6) 

𝑝(𝑀𝑗|𝑇𝑗) =   ∏ 𝑝(𝜇𝑖𝑗|𝑇𝑗)

𝑗

(7) 

p refers to probability. 𝜇𝑖𝑗  is element in corresponding 𝑀𝑗. The three priors are 𝑝(𝑇𝑗), 𝑝(𝜇𝑖𝑗|𝑇𝑗) and 

𝑝(𝜎). The 𝑝(𝑇𝑗) is specified by three aspects – (1) deep nonterminal nodes are unlikely to exist, (2) the 

distribution on splitting variable assignment is uniform and (3) the distribution on splitting rule 

assignment is uniform. The 𝑝(𝜇𝑖𝑗|𝑇𝑗) applies greater shrinkage to parameter values of every terminal 

nodes as number of subtrees increases in the model. The 𝑝(𝜎) is correlated to inverse chi-square 

distribution of degree of freedom. Because of excellent predictive performance for both continuous and 

binary outcomes, BART has been applied in many important areas such as survival analysis in medical 

study [24], species distribution modelling in ecology [25] and phenotypes prediction in genomics [26]. 

4.  Results 

In this section, we apply methods mentioned in section 3 to identify (1) average treatment effect of 

ECLS-K program on students’ fifth grade math score and (2) factors heavily impacting students’ fifth 

grade math score. The dataset we are using is ECLS-K dataset. The variables of dataset are listed below, 

where d stands for Standardized Mean Difference and r stands for Variance ratio. 

Table 1. ECLS-K dataset description. 

Variable 
Description of 

Variable 
Values d r 

DEMOGRAPHIC 

GENDER Male 0,1 0.38 0.88 

WKWHITE White 0,1 0.17 0.79 

WKSESL Socioeconomic [-4.8,2.8] -0.29 0.89 

ACADEMIC 

RIRT 
Kindergarten 

Reading Score 
[23.17,139.96] -0.65 0.53 

MIRT 
Kindergarten 

Math Score 
[11.9,99.0] -0.71 0.77 

S2KPUPRI Public School 0,1 0.44 0.25 

P1EXPECT 
Parental 

Expectation 
Integers 1-6 -0.32 1.22 

P1FIRKDG 
First-Time 

Kindergartener 
0,1 -0.41 3.26 
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Table 1. (continued). 

P1AGEENT Child’s Age at K 

Entry (Months) 

[54,79] 0.08 1.08 

apprchT1 Approaches to 

Learning Rating 

Integers 1-4 -0.70 1.20 

P1HSEVER Attended Head 

Start 

0,1 0.19 1.42 

chg14 Ever Changed 

Schools 

0,1 0.02 1.09 

SCHOOL COMPOSITION 

avg_RIRT Reading IRT [27.9, 80.0] -0.23 0.79 

avg_MIRT Math IRT [16.1, 66.1] -0.18 0.82 

avg_SES SES [-2.2, 2.5] -0.16 0.88 

avg_apprchT1 Approaches to 

Learning 

[1.5, 4.0] -0.14 0.80 

S2KMINOR Percent Minority 

Students 

Integers 1-5 -0.20 0.77 

FAMILY CONTEXT 

P1FSTAMP Received Food 

Stamps 

0,1 0.12 1.26 

ONEPARENT One-Parent 

Family 

0,1 0.13 1.22 

STEPPARENT Stepparent 

Family 

0,1 0.05 1.19 

P1NUMSIB Number of 

Siblings 

[0, 10] 0.16 1.17 

P1HMAFB Mother’s Age at 

First Birth 

Years [12, 45] -0.26 1.00 

WKCAREPK Nonparental Pre-

K Child Care 

0,1 -0.07 1.14 

HEALTH 

P1EARLY Number of Days 

Premature 

[0, 112] 0.19 2.05 

wt_ounces Birth Weight  [17, 214] -0.11 1.24 

C1FMOTOR Fine Motor Skills Integers 0-9 -0.63 1.27 

C1GMOTOR Gross Motor 

Skills 

Integers 0-8 -0.43 1.54 

PARENT RATING OF CHILD 

P1HSCALE Overall Health Integers 1-5 0.12 1.17 

P1SADLON Sad/Lonely Integers 1-4 0.10 1.32 

P1IMPULS Impulsive Integers 1-4 0.41 1.55 

P1ATTENI Attentive Integers 1-4 0.72 1.45 

P1SOLVE Problem Solving Integers 1-4 0.68 1.55 

PSPRONOU Verbal 

Communication 

Integers 1-4 0.86 1.51 

P1DISABL Child has 

Disability 

0,1 0.82 2.38 
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The task of finding ATE is achieved by propensity score matching and linear regression. As been 

discussed before, the strong ignorability is necessary assumption for RCM to work properly. However, 

this assumption does not hold for the raw ECLS-K dataset since it is not a randomized trial. Children 

who receives the treatment are students with learning difficulty. The distribution of control group and 

treatment groups are shown in histogram below (where 0 represents controlled unit and 1 represents 

treated unit).  

 

Figure 1. Treatment assignment histogram. 

In order to fulfill this assumption, some quasi-experimental methods have to be applied to emulate a 

randomized study. We resolve to propensity score matching (PSM), which pairs treated and controlled 

units based on a single-dimension propensity score. We use the trimmed PSM in this experiment, which 

excludes subjects with extreme propensity score and focuses on those units exhibits high degree of 

covariates overlapping to make the pairing easy. The results of trimmed PSM are shown below. 

Table 1. (continued). 

EXPOSURE VARIABLE 

F5SPECS 

Special 

Education 

Services 

0,1 NA NA 

OUTCOME VARIABLE 

C6R4MSCL 
Fifth Grade Math 

Score 
[50.9, 170.7] -0.77 1.40 

 

 

Table 2. the treatment effects by trimmed PSM. 

 Est. S.e. z P>|z| [95% Conf. 

int.] 

ATE -9.147 2.444 -3.742 0.000 -13.938     -

4.356 

ATC -8.926 2.552 -3.498 0.000 -13.928     -

3.925 

ATT -12.715 1.939 -6.556 0.000 -16.516     -

8.913 
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According to the table shown above, the estimated average treatment effect is -9.147 with standard error 

2.444. The trimmed PSM shows that the ECLS training program has a negative effect on students’ fifth 

math score.  

We also use another machine learning based model, linear regression, as an auxiliary to check the 

validity of the above trimmed PSM conclusion. Fitting linear model to the data by linear regression, we 

get formula 

𝑌 =  𝛼 +  𝛽𝑋 +  𝛾𝐷 (8) 

𝑌 represents the response which is students’ fifth grade. 𝐷 represents the treatment which is the ECLS 

training program. And 𝑋represents confounding variables which are those remaining variables. Alpha, 

beta and gamma are coefficients we are trying to solve. After configuring the linear model mentioned 

above and solving it via ordinary least square, we get the results shown below. 

According to the table shown above, the estimated average treatment effect is -7.909 with standard error 

0.961. Both the trimmed PSM and linear regression share the similar trend in estimating the average 

treatment effect of ECLS-K program. Therefore, it is now safe to conclude that the ECLS training 

program has a negative effect on students’ fifth math score. 

The task of finding relationship between math score and each variable is achieved by linear 

regression, MLP regression and BART. By setting ground truth as students’ fifth grade math score and 

all other variables as features, linear regression shows that the top three factors that positively impact 

students’ math score are kindergarten math score, fine motor skill and gender. The top three factors that 

negatively impact students’ math score are child’s age at k entry, ECLS training program, attended head 

start. With the purpose of checking the reliability of linear regressor, we split the data into training and 

test part, where we train the model with training part data and test the trained model with test part data. 

The root mean squared error (RMSE) of the trained linear model is 15.685, which is not good enough. 

The second method that we use, the MLP regressor, is set up with 1 hidden layer and ReLU activation 

for convenience of understanding relationships. The MLP regressor is trained by Adam solver and 

nesterovs momentum with maximum training iteration 10000. The results of MLP regressor match those 

of the linear regressor. The three top positive factors are still kindergarten math score, fine motor skill 

and gender and the three most negative factors are still ECLS training program, child’s age at k entry 

and attended head start. The RMSE of the MLP model is 16.385, which is a little bit worse than that of 

linear model. Finally, BART is introduced to improve the model’s performance on unseen dataset. The 

number of trees is set to 50. The shape and scale parameter of the prior on sigma are both set to 0.001. 

And the prior parameter on tree structure alpha and beta are set to 0.95 and 2 respectively. The final 

trained BART model shows the similar relationship trend as linear and MLP model with the lowest 

RMSE among three methods, which is 15.1.  

Table 3. the treatment effects by linear regression. 

 Est. S.e. z P>|z| [95% Conf. 

int.] 

ATE -7.909 0.961 -8.233 0.000 -9.791     -

6.026 

 

 

Table 4. the RMSE three regression methods. 

 LR MLP BART 

RMSE 15.685 16.385 15.1 
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5.  Conclusion 

Causal inference plays important roles in educational effectiveness research in that they allow for 

clarifying complex causal relationship. By above methods, we could conclude that (1) the ECLS-K 

program has insignificant negative impact on student’s math score, (2) the top three factors that 

positively impact student’s math score are kindergarten math score, fine motor skill and gender and (3) 

the top three factors that negatively impact student’s math score are child’s age at k entry, ECLS training 

program, attended head start. Our results are in accord with those of official analysis, which indicates 

the receipt of special education services has either a negative or statistically non-significant impact on 

children’s learning or behaviour [27].  
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