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Abstract. The Rubik’s Cube is a widely recognized puzzle. The mathematics behind the Rubik’s 

Cube is group theory. Group theory studies algebraic structures in mathematics such as groups, 

rings, and fields. The operation of the Rubik’s Cube is rotation, which can be considered an 

operation of a group. The combination of two rotations of the Rubik’s Cube can be considered 

the association of two operations of a group. The rotations and the combination operation of two 

rotations form a group called the Rubik’s Cube group, and this paper presents the order of this 

group which is also the quantity of possible valid configurations of the Rubik’s Cube. The valid 

configurations are the configurations that can be reached by a series of rotations from the starting 

configuration. This paper presents a method to illustrate the configurations of the Rubik’s Cube, 

the requirements for making the configurations valid, and calculate the quantity of possible valid 

configurations. 

Keywords: Group theory, Rubik’s Cube, Sign Homomorphism. 

1.  Introduction 

The Rubik’s Cube is a three-dimensional puzzle initially created by architect Ernő Rubik, and it is one 

of the best-selling toys in the world. The first mathematical approach to analyzing Rubik’s Cube was 

written by mathematician David Singmaster [1]. The Rubik’s Cube is still widely recognized today. The 

competition that requires players to solve Rubik’s Cube as quickly as possible is called speed cubing, 

and such competitions are held worldwide every year today.  The world record up to 2023 for solving a 

single Rubik’s Cube is 3.13 seconds [2]. 

The mathematics that Singmaster first uses to find a general step-by-step solution to Rubik’s Cube is 

group theory, which research on algebraic structures. A group is a structure that consists of a nonempty 

set and a binary operation. In Rubik’s Cube, all rotations and the combination of two rotations form a 

group, and this group is called the Rubik’s Cube group. Every rotation can be thought of as an element 

of the Rubik’s Cube group, the move that does not change the current configuration can be considered 

as the identity element of this group, and the combination of two rotations can be thought of as the 

association of two elements in this group. The solution to the Rubik’s Cube can be illustrated clearly via 

group theory and group theory can be used to examine whether an arbitrary configuration of the Rubik’s 

Cube can be returned to the start configuration through some rotations of the cube (is valid) or not.  To 

study the restrictions that make a configuration valid, the notion of group homomorphism and 

permutation is required [3]. Group homomorphism studies the relationship between two groups and 

permutation is a bijection of a nonempty set. It can be easily understood that the order of the Rubik’s 
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Cube equals the quantity of the possible valid configurations, and this quantity can be calculated with 

the restrictions enabling a configuration valid.   

In the twenty-first century, the problem of finding the minimum distance between two cycles of the 

cube is a problem requiring not only mathematics but also computer science. God’s number is the highest 

value of the optimal solution of Rubik’s Cube. God’s number was continually updated in the first decade 

of the twenty-first century by researchers using algorithms and the increasing use of computational 

resources. God’s number was eventually determined and proven to be 20 in 2010 using computers at 

Google and required a total of 35 CPU years [4]. 

The mathematics requires to illustrate the solutions to the Rubik’s cube are basic concepts and 

theorems. Specifically, the nations of group, subgroup, group homomorphism, and permutation [5]. In 

the calculation process of the possible configurations, the knowledge of basic combinatorics is also 

required.  In this paper, the solution to Rubik’s Cube via group theory is presented, and the number of 

possible valid configurations is calculated. 

2.  Preliminary 

2.1.  Groups 

Rubik’s Cube contains a mathematical structure called a group. The concept of the group is a 

mathematical structure that satisfies three properties. 

Definition 1. Suppose 𝐺 is a nonempty set. A binary operation ∗ on 𝐺 is a function such that:  

∗: 𝐺 × 𝐺 → 𝐺, (𝑔1, 𝑔2) ↦ 𝑔1 ∗ 𝑔2. (1) 

𝑔1 ∗ 𝑔2 is usually shortened to 𝑔1𝑔2. 

Definition 2. A group is a nonempty set 𝐺 together with a binary operation ∗ on it (denoted by 𝐺 or  

(𝐺,∗)) such that: 

The binary operation ∗  is associative: ∀𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, (𝑔1𝑔2)𝑔3 = 𝑔1(𝑔2𝑔3).  𝐺  has an identity 

element 𝑖𝑑𝐺: ∀𝑔1 ∈ 𝐺, ∃𝑖𝑑 ∈ 𝐺 such that 𝑔1𝑖𝑑𝐺 = 𝑖𝑑𝐺𝑔1 = 𝑔1. Existing inverse element: For any 𝑔1 ∈
𝐺, ∃𝑔1

−1 ∈ 𝐺 such that 𝑔1
−1𝑔1 = 𝑔1𝑔1

−1 = 𝑖𝑑𝐺 .  
Definition 3. Suppose 𝐺 is a group. A subgroup 𝐻 of 𝐺 (denoted as 𝐻 < 𝐺) is a subset of 𝐺 such that: 

𝐻  is closed: ∀𝑔1, 𝑔2 ∈ 𝐻, 𝑔1𝑔2 ∈ 𝐺.  Existing inverse element: ∀𝑔1 ∈ 𝐺, ∃𝑔1
−1 ∈ 𝐺  such that  

𝑔1
−1𝑔1 = 𝑔1𝑔1

−1 = 𝑖𝑑𝐺 .  
Definition 4. Suppose 𝐺 is a group, the order of 𝐺 is the number of elements in 𝐺, and denoted by |𝐺|. 
Definition 5. Suppose 𝐺  is a group, and 𝐻 < 𝐺 . ∀𝑔1 ∈ 𝐺,  define 𝑔1𝐻 ≔ {𝑔1ℎ: ℎ ∈ 𝐻}  and 𝐻𝑔1 ≔
{ℎ𝑎: ℎ ∈ 𝐻}. Then 𝑔1𝐻 is a left coset of 𝐻, 𝐻𝑔1 is a right coset of 𝐻, and both 𝑔1𝐻 and 𝐻𝑔1 are called 

cosets of 𝐻. 

Definition 6. Suppose 𝑛 is a positive integer. For any 𝑥 ∈ {0,1, … , 𝑛 − 1}, let  𝑥 denotes the coset of 𝑛ℤ 

such that: 

𝑥 = 𝑥 + 𝑛ℤ. (2) 

Define the addition between the cosets of 𝑛ℤ as 𝑥 + 𝑦 = {
𝑥 + 𝑦, 𝑥 + 𝑦 < 𝑛;

𝑥 + 𝑦 − 𝑛, 𝑥 + 𝑦 ≥ 𝑛.
 

ℤ/𝑛ℤ forms a group with cosets {0, 1, … , 𝑛 − 1} and the addition defined above, and ℤ/𝑛ℤ is called 

the group of addition modulo n [6]. 

2.2.  Permutation 

The permutation group contributes to illustrating the structure of the Rubik’s Cube in a clear way with 

positive integers. 

Definition 7. Let 𝐺 be a nonempty set. The set of all bijections 𝐺 → 𝐺 is called the symmetric group on 

𝐺 , and denoted by 𝑆𝑦𝑚(𝐺) . hhen 𝐺 = {1,2,3, … , 𝑛}, 𝑆𝑦𝑚(𝐺)  is written as 𝑆𝑛,  and  𝑆𝑛  is called 

symmetric group on n letters.  
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Definition 8. A permutation of a nonempty set 𝐺  is a bijection from 𝐺  to 𝐺 . Suppose 𝜎 ∈ 𝑆𝑛  is a 

permutation, ∀𝑖 ∈ {1,2,3, … , 𝑛}, 𝑖 ↦ 𝜎(𝑖). 

Definition 9. The cycle (𝑖1𝑖2 … 𝑖𝑘)  is an element 𝜎  of 𝑆𝑛  defined by 𝜎(𝑖1) = 𝑖2, 𝜎(𝑖2) =
𝑖3, … , 𝜎(𝑖𝑘−1) = 𝑖𝑘 , 𝜎(𝑖𝑘) = 𝑖1  and 𝜎(𝑗) = 𝑗  for 𝑗 ∈ {1,2,3, … , 𝑛}\{𝑖1, 𝑖2, … , 𝑖𝑘} . The length of 
(𝑖1𝑖2 … 𝑖𝑘) is k. Let n be a positive integer, a cycle of length n is called a n-cycle.  

Definition 10. Suppose 𝜎 and 𝜏 are two cycles of 𝑆𝑛. 𝜎 and 𝜏 are disjoint if supp𝜎 ∩ supp𝜏 =  ∅. 

Theorem 1. Every permutation 𝜎 ∈ 𝑆𝑛  can be expressed as a unique product of a finite number of 

pairwise disjoint cycles [7]. 

Proof. Suppose 𝑖 ∈ {1,2,3, … , 𝑛} . Then consider the sequence 𝑖, 𝜎(𝑖), 𝜎2(𝑖), … . This sequence must 

eventually repeat since for every 𝑗 ∈ {1,2,3, … , 𝑛}, 𝜎(𝑗) ∈ {1,2,3, … , 𝑛} . Therefore, ∃𝑞 > 𝑝  such that 

𝜎𝑝(𝑖) = 𝜎𝑞(𝑖), meaning 𝜎𝑞−𝑝(𝑖) = 𝑖. Let 𝑘 = 𝑞 − 𝑝. Then (𝑖 𝜎(𝑖) 𝜎2(𝑖) … 𝜎𝑘−1(𝑖)) is a cycle in 𝑆𝑛, 

which means every element of the set {1,2,3, … , 𝑛}  belongs to a cycle in 𝑆𝑛 . Moreover, any cycle 

contains 𝑖 must be the same cycle shown above. 

Definition 11. Even permutations are the permutations in 𝑆𝑛 that can be presented as a product of some 

2-cycles. Odd permutations are the permutations in  𝑆𝑛 that are not even permutations. 

2.3.  Homomorphism 

The homomorphism illustrates the relationship between two groups, the sign homomorphism below is 

of great importance in determining whether a configuration can be returned to the starting configuration 

after some rotations or not.  

Definition 12. Let (𝐺,∗), and (𝐻,∙) be two groups. A homomorphism from 𝐺 to 𝐻 is a map 𝑓: 𝐺 → 𝐻, 

∀𝑝, 𝑞 ∈ 𝐺, 𝑓(𝑝 ∗ 𝑞) = 𝑓(𝑝) ∙ 𝑓(𝑞). 𝑓 is called an isomorphism if 𝑓 is bijective. 

Theorem 2. Let 𝑎1, 𝑎2, … , 𝑎𝑛  be positive integers. Define Δ(𝑎1, 𝑎2, … , 𝑎𝑛) = Π1≤𝑖<𝑗≤n(𝑎𝑖 − 𝑎𝑗) . 

Suppose 𝜎 ∈ 𝑆𝑛 , define 𝜎(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = Δ(𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝑛)).  hith such definition, 

𝜎(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = ±Δ(𝑎1, 𝑎2, … , 𝑎𝑛) [8]. 

Proof. By the definitions given above,  

𝜎(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = Δ(𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝑛)) = Π1≤𝑖<𝑗≤n(𝑎𝜎(𝑖) − 𝑎𝜎(𝑗)) (3) 

Δ(𝑎1, 𝑎2, … , 𝑎𝑛) = Π1≤𝑖<𝑗≤n(𝑎𝑖 − 𝑎𝑗) (4) 

Since 𝜎  is a bijection, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝜎(𝑖) ≠ 𝜎(𝑗) . Let 𝑖′  be the smaller number between 

𝜎(𝑖) and 𝜎(𝑗), and 𝑗′ be the other number, then 𝑎𝜎(𝑖) − 𝑎𝜎(𝑗) = ±(𝑎𝑖′ − 𝑎𝑗′). Therefore, the theorem 

holds since 𝜎(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = Δ(𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝑛)) =  Π1≤𝑖<𝑗≤n(𝑎𝜎(𝑖) − 𝑎𝜎(𝑗)) = Π1≤𝑖<𝑗≤n ±

(𝑎𝑖 − 𝑎𝑗) = ±Π1≤𝑖<𝑗≤n(𝑎𝑖 − 𝑎𝑗) = ±Δ(𝑎1, 𝑎2, … , 𝑎𝑛). 

Lemma 1. Let 𝑎1, 𝑎2, … , 𝑎𝑛 be positive integers, suppose 𝜎, 𝜏 ∈ 𝑆𝑛. Then  

(𝜎𝜏)(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = 𝜎 (𝜏(Δ(𝑎1, 𝑎2, … , 𝑎𝑛))) (5) 

Proof. Since (𝜎𝜏)(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = Δ(𝑎𝜎𝜏(1), 𝑎𝜎𝜏(2), … , 𝑎𝜎𝜏(𝑛))  and ∀1 ≤ 𝑖 ≤ 𝑛, 𝜎𝜏(𝑖) = 𝜎(𝜏(𝑖))   

then (𝜎𝜏)(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = 𝜎(Δ(𝑎𝜏(1), 𝑎𝜏(2), … , 𝑎𝜏(𝑛))) =  𝜎(𝜏(Δ(𝑎1, 𝑎2, … , 𝑎𝑛))).  

Definition 13. Suppose 𝜎 ∈ 𝑆𝑛, 𝑎1, 𝑎2, … , 𝑎𝑛 be positive integers. Define  

𝑠𝑔𝑛: 𝑆𝑛 → {1, −1}, 𝜎(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = 𝑠𝑔𝑛(𝜎)Δ(𝑎1, 𝑎2, … , 𝑎𝑛). (6) 

Theorem 3. 𝑠𝑔𝑛 is a homomorphism and is called Sign Homomorphism. 

Proof. Suppose 𝜎, 𝜏 ∈ 𝑆𝑛, 𝑎1, 𝑎2, … , 𝑎𝑛 be positive integers. From Lemma 1,  

(𝜎𝜏)(Δ(𝑎1, 𝑎2, … , 𝑎𝑛)) = 𝜎 (𝜏(Δ(𝑎1, 𝑎2, … , 𝑎𝑛))) = 𝑠𝑔𝑛(𝜎𝜏)Δ(𝑎1, 𝑎2, … , 𝑎𝑛)

=  𝑠𝑔𝑛(𝜎)Δ(𝑎𝜏(1), 𝑎𝜏(2), … , 𝑎𝜏(𝑛)) = 𝑠𝑔𝑛(𝜎)𝑠𝑔𝑛(𝜏)Δ(𝑎1, 𝑎2, … , 𝑎𝑛) (7)
 

Therefore, 𝑠𝑔𝑛(𝜎𝜏) = 𝑠𝑔𝑛(𝜎)𝑠𝑔𝑛(𝜏), meaning 𝑠𝑔𝑛 is a homomorphism.   
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3.  Rubik’s Cube 

3.1.  Notations of the Rubik’s Cube 

In all the following contents below, the cube refers to the Rubik’s Cube and the configurations and faces 

refer to the configurations and faces of the Rubik’s Cube.  

Definition 14. The 27 small cubes that form the cube are called cubies. Corner cubies are the cubies 

located at the corner of the cube, and edge cubies are the cubies located at the edge of the cube. 

Definition 15. Cubicles are the locations that cubies stay in the cube.  

To illustrate the rotations of the cube clearly, some notations are needed. The six faces of the cube, 

which are the upward, downward, right, left, front and back face, are denoted as 𝑢, 𝑑, 𝑟, 𝑙, 𝑓, and 𝑏 

respectively. These notations are introduced by David Singmaster [1].  

Example 1. The cubie in the front, upper, and left corner is denoted as 𝑓𝑢𝑙. 
Definition 16. The rotations of the cube are called moves.  

Fixing the cube, then the moves that rotate every face of the Rubik’s Cube 90 degrees clockwise are 

called fundamental moves and denoted as follows. Looking at the upward face then rotate the front face 

90 degrees clockwise. This rotation is denoted as 𝑈. The rest of the moves of the downward, right, left, 

front, and back faces are similarly denoted as 𝐷, 𝑅, 𝐿, 𝐹, 𝐵 respectively. 

Definition 17. The operation that performs one move of the cube first and then performs another move 

of the cube is called concatenation. 

3.2.  The Possible Configurations 

The cube has 12 edge cubies and 8 corner cubies. It can be observed that any move of the cube does not 

change any center cubie since the orientation and location of the center cubie that is affected by the 

move remain the same. Additionally, after moving the Rubik’s Cube, corner cubicles are the only 

locations that corner cubies can be in, and edge cubicles are only locations that edge cubies can be in. 

hith these observations, each of the 8 corner cubies has 3 orientations, and the 8 corner cubies have 8! 

arrangements to be put into the 8 corner cubicles. Therefore, there exists 38 ∙ 8!  possible configurations 

of corner cubies. Similarly, each of the 12 edge cubies has 2 orientations, and the 12 cubies have 12! 

arrangements to be put into the 12 cubicles, meaning the edge cubies have 212 ∙ 12!  possible 

configurations. Therefore, the cube has in total of 38 ∙ 212 ∙ 8! ∙ 12! possible configurations [9]. 

Definition 18. A configuration is valid if it can be obtained from the starting configuration after a series 

of fundamental moves.  

3.3.  The Rubik’s Cube Group 

Theorem 4. The set of all moves that can be obtained from the starting configuration by performing the 

rotations of the cube with the binary operation concatenation forms a group. This group is called the 

Rubik’s Cube group and is denoted by (ℂ,∙) [10]. 

Proof. Concatenation is associative since performing two moves and then performing another move 

equals performing one move first and then performing the other two move.  

Suppose ℛ is an arbitrary move.  

The move that does not change the configuration of the cube is the identity of  (ℂ,∙) and is denoted 

by 𝑖𝑑ℂ  since ℛ ∙ 𝑖𝑑ℂ = 𝑖𝑑ℂ ∙ ℛ = ℛ . The move that reverses of all the rotations of ℛ  is the inverse 

element of ℛ and is denoted by ℛ−1 since ℛ ∙ ℛ−1 = ℛ−1 ∙ ℛ = 𝑖𝑑ℂ.  

3.4.  The Valid Configurations 

From 3.2., a configuration is determined by the orientations and locations of the corner and edge cubies. 

Since the eight corner cubicles are the only places that the eight corner cubies can be in, the locations of 

the corner cubies can be described by 𝑆8. Similarly, the locations of the edge cubies can be described by 

𝑆12. For each corner cubie, there exist three orientations that can be distributed to three faces of the 

corner cubie.  
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For each corner cubie, write 0,1,2 on the three faces of the cubie, more specifically, suppose every 

corner cubie is in the 𝑑𝑙𝑓 cubicle, then write 0 to the d face, 1 to the l face, 2 to the f face. Mark the 

upward and downward faces of all the corner cubicles with ‘+’. The numbers on the corner cubie face 

that are marked with ‘+’ are assigned to each corner cubie. Therefore, the orientations of the corner 

cubies of a configuration can be described as an 8 tuple of (ℤ/3ℤ)8. For each edge cubie, write 0,1 on 

the two faces of the cubie, more specifically, suppose every edge cubie is in the 𝑙𝑓 cubicle, then write 0 

to the l face, 1 to the f face. Mark the upward, downward, front, and back faces of all the edge cubicles 

with ‘𝜒’. The numbers on the edge cubie face that are marked with ‘𝜒’ are assigned to each edge cubie. 

Therefore, the orientations of the edge cubies of a configuration can be described as a 12 tuple of 

(ℤ/2ℤ)12. 

Theorem 5. hith the above discussion, it is clear that a configuration can be specified by four data: The 

locations of corner cubies 𝜎 ∈ 𝑆8, the locations of the edge cubies 𝜏 ∈ 𝑆12, the orientations of the corner 

cubies 𝑥 ∈ (ℤ/3ℤ)8 , and the orientations of the edge cubies 𝑦 ∈ (ℤ/2ℤ)12  ( 𝑥 ∈ (ℤ/3ℤ)8 , 𝑥 =
(𝑥1, 𝑥2, … , 𝑥8)  (1 ≤ 𝑖 ≤ 8, ∀𝑥𝑖 ∈ ℤ/3ℤ) . 𝑦 ∈ (ℤ/2ℤ)12 , 𝑦 = (𝑦1, 𝑦2, … , 𝑦12)  (1 ≤ 𝑖 ≤ 12, ∀𝑦𝑖 ∈ ℤ/
2ℤ) ). Therefore, a configuration can be presented as a tuple: (𝜎, 𝜏, 𝑥, 𝑦) ∈ 𝑆8 × 𝑆12 × (ℤ/3ℤ)8 ×
(ℤ/2ℤ)12. 

Theorem 6. Let (𝜎, 𝜏, 𝑥, 𝑦) ∈ 𝑆8 × 𝑆12 × (ℤ/3ℤ)8 × (ℤ/2ℤ)12 . (𝜎, 𝜏, 𝑥, 𝑦)  is a valid configuration if 

and only if: 𝑠𝑔𝑛(𝜎) = 𝑠𝑔𝑛(𝜏)  Σ𝑖=1
8 (𝑥𝑖) ≡ 0 (𝑚𝑜𝑑 3)  Σ𝑖=1

12 (𝑦𝑖) ≡ 0 (𝑚𝑜𝑑 2). 

Proof. Firstly, suppose (𝜎, 𝜏, 𝑥, 𝑦)  is a valid configuration. Let 𝑀 ∈ (ℂ,∙)  be the move that make the 

Rubik’s Cube from the starting configuration to (𝜎, 𝜏, 𝑥, 𝑦), 𝑀 = 𝑀1 ∙ 𝑀2 ∙ … ∙ 𝑀𝑘  (∀1 ≤ 𝑖 ≤ 𝑘, 𝑀𝑖 is a 

fundamental move). 

Since any fundamental move changes four corner and edge cubies, and such move is a 4-cycle which 

has 𝑠𝑔𝑛 = −1 , and for any fundamental move ℳ , 𝑠𝑔𝑛(ℳ) = −1 . Therefore, 𝑠𝑔𝑛(𝜎) =

𝑠𝑔𝑛(Π𝑖=1
𝑘 𝑀𝑘) = Π𝑖=1

𝑘 𝑠𝑔𝑛(𝑀𝑖) = 𝑠𝑔𝑛(𝜏) = −1. 

To prove that Σ𝑖=1
8 (𝑥𝑖) ≡ 0 (𝑚𝑜𝑑 3) and Σ𝑖=1

12 (𝑦𝑖) ≡ 0 (𝑚𝑜𝑑 2) holds, the data of the changes after 

performing fundamental moves is needed since 𝑀 is the concatenation of some of these moves. 

Table 1. The changes to 𝑥 and 𝑦 after each fundamental move. 

fundamental move The changes to 𝑥 and 𝑦 after each fundamental move 

𝑈 
(𝑥2, 𝑥3, 𝑥4, 𝑥1, 𝑥5, 𝑥6, 𝑥7, 𝑥8) 

(𝑦4, 𝑦1, 𝑦2, 𝑦3, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10, 𝑦11, 𝑦12) 

𝐷 
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥8, 𝑥5, 𝑥6, 𝑥7) 

(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦10, 𝑦11, 𝑦12, 𝑦9) 

𝑅 
(𝑥1, 𝑥7 + 1, 𝑥2 + 2, 𝑥4, 𝑥5, 𝑥6, 𝑥8 + 2, 𝑥3 + 1) 

(𝑦1, 𝑦7, 𝑦3, 𝑦4, 𝑦5, 𝑦2, 𝑦10, 𝑦8, 𝑦9, 𝑦6, 𝑦11, 𝑦12) 

𝐿 
(𝑥4 + 2, 𝑥2, 𝑥3, 𝑥5 + 1, 𝑥6 + 2, 𝑥1 + 1, 𝑥7, 𝑥8) 

(𝑦1, 𝑦2, 𝑦3, 𝑦5, 𝑦12, 𝑦6, 𝑦7, 𝑦4, 𝑦9, 𝑦10, 𝑦11, 𝑦8) 

𝐹 
(𝑥6 + 1, 𝑥1 + 2, 𝑥3, 𝑥4, 𝑥5, 𝑥7 + 2, 𝑥2 + 1, 𝑥8) 

(𝑦1, 𝑦2, 𝑦8 + 1, 𝑦4, 𝑦5, 𝑦6, 𝑦3 + 1, 𝑦11 + 1, 𝑦9, 𝑦10, 𝑦7 + 1, 𝑦12) 

𝐵 
(𝑥1, 𝑥2, 𝑥8 + 1, 𝑥3 + 2, 𝑥4 + 1, 𝑥6, 𝑥7, 𝑥5 + 2) 

(𝑦6 + 1, 𝑦2, 𝑦3, 𝑦4, 𝑦1 + 1, 𝑦9 + 1, 𝑦7, 𝑦8, 𝑦5 + 1, 𝑦10, 𝑦11, 𝑦12) 

From Table 1, it can be calculated that every fundamental move satisfies Σ𝑖=1
8 (𝑥𝑖

′) ≡ 0 (𝑚𝑜𝑑 3) and 

Σ𝑖=1
12 (𝑦𝑖

′) ≡ 0 (𝑚𝑜𝑑 2) . Since 𝑀 = 𝑀1 ∙ 𝑀2 ∙ … ∙ 𝑀𝑘 , ∀1 ≤ 𝑖 ≤ 𝑘, 𝑀𝑖 ∈ {𝐹, 𝐵, 𝑅, 𝐿, 𝑈, 𝐷} , then 

Σ𝑖=1
8 (𝑥𝑖) ≡ 0 (𝑚𝑜𝑑 3) and Σ𝑖=1

12 (𝑦𝑖) ≡ 0 (𝑚𝑜𝑑 2).  
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One direction of the proof has been shown. Showing the other direction of the proof is more difficult, 

a complete proof can be found in [5]. The general steps of proving the other direction are the following: 

Put all the corner cubies in the correct cubicles. Put all the corner cubicles in the correct cubicles 

with the correct orientations. Put all the edge cubies in the correct cubicles and remain the corner cubies 

unchanged. Put all the edge cubies in the correct cubicles with the correct orientations and remain the 

corner cubies unchanged. Putting a cubie in the correct cubicle means the faces of the cubicle are the 

same as the faces of the cubie. 

Theorem 7. The Rubik’s Cube group has the order 
38∙212∙8!∙12!

12
. 

Proof. From 3.2, the quantity of possible configurations is: 

38 ∙ 212 ∙ 8! ∙ 12! (8) 

From Theorem 6. only 
1

12
 of the possible configurations are valid since: 

There are the same number of odd permutations as the even permutations. The 𝑠𝑔𝑛  of all odd 

permutations is -1 and the 𝑠𝑔𝑛  of all even permutations is 1. Therefore, the possible configurations 

should be deduced 
1

2
. Since the orientation of the 8th corner cubie is determined by the orientations of 

the rest of 7 corner cubies, the possible configurations should be deduced 
1

3
. Since the orientation of the 

12th edge cubie is determined by the orientations of the rest of 11 edge cubies, the possible 

configurations should be deduced 
1

2
.  

The order of the Rubik’s Cube group is also the quantity of the possible valid configurations of the 

cube.  

4.  Conclusion 

To mathematically solve the Rubik’s Cube, basic notions of group theory are needed. The rotations of 

the cube can be considered as permutations, and to specify the configurations, two sets of numbers are 

assigned to the corner cubies and edge cubies respectively. The rotations together with the binary 

operation concatenation form a group. The binary operation concatenation of two rotations is doing one 

rotation first, and then doing the other. A configuration is determined by the corner and edge cubies, 

specifically by their orientations and locations. hith the Rubik’s Cube and the assigned numbers on the 

corner and edge cubies, the requirements of the valid configurations can be proved. hith the 

requirements of the valid configurations, the possible valid configurations can be calculated. 
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