

Player identification based on player behavioral
characteristics

Hexin Li1,*, Yizhi Fang2
1Department of Math and Applied Mathematics, University Nottingham Ningbo
China, Ningbo, 315000, China
2Department of Mathematics and Statistics, Guangdong University of Foreign Studies
Guangzhou, Guangdong, 510006, China

sgyhl2@nottingham.edu.cn, frank-fangyz@139.com

Abstract. In order to maintain a fair competition environment and enjoyable experience for
players, millions of dollars have been spent on against cheating in video games. There is limited
research on more sophisticated forms of cheating like “play-for-hire” whereby players pay others
to play for themselves. Our work develops a model to identify each player from player
behavioural characteristics, which will contribute to solve the “play-for-hire” problem. Firstly,
we recorded interactions between players and the game as multivariate time series. Next, we
tried to use CNN and LSTM to classify data as corresponding players and we do some feature
processing and parameter optimization to improve our result. We found that LSTM is acting
better than CNN in higher dimensions, which achieved an accuracy of nearly 87%.

Keywords: LSTM, CNN, multivariate, player’s behaviour.

1. Introduction
The aim of this report is to represent and compare the accuracy of different models in given condition
which is a Pac-man game designed by ourselves.

1.1. Background information:
Cheating is a common phenomenon in video games. According to a report from DENUVO (irdeto) [1],
a company that aims to protect digital IP through anti-temper technology, 78% of players quit the game
because of the existence of cheaters. What’s more, nearly one-third of the players admitted to cheating
in games. These numbers mean billions of revenues may be impacted, and cheaters are ruining the
ecology of online games.

There has been substantial research tends to detect and eliminate the cheating activities like
“Triggerbot”, “Aimbot” and “Extrasensory perception” [2-5]. By contrast, there is limited research on
other more sophisticated forms of cheating, such as “play-for-hire” whereby a player pays another player
to play on his/her behalf. “Play-for-hire” is a massive underground economy in developing countries.
Advertisements of “games training services” can be found easily in all major e-shops in China, we can
infer the influence of manual cheating is badly widespread. Our work wants to solve manual cheating
problems.

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

148

mailto:sgyhl2@nottingham.edu.cn
mailto:frank-fangyz@139.com

The key to solving the cheating problem from human players is being able to identify every player.
If we can identify every single player based on their behaviors, we can detect cheat when somebody
asks another player to play for him.

The reason that the data of the giant game company is hard to achieve and the purpose is to simplify
the setting and get rid of the noise, we design a new game. The Player needs to use the keyboard to avoid
enemies and drive the ball to the destination.

Following the hypothesis from Jose [2], we assumed that the behavior of the players can be
represented by multivariate time series and can be classified by our models. Besides moving data (up,
down, left, right), we added up some common features which may impact the decision actions of players
in our work. For example, the relative position between the player, enemy, goal, etc. (Details can be
seen in Data Pre-processing). These features can be found in many games and can be applied to other
games easily.

We want to use multivariate time series to train a model which can match new game series with the
right players. We selected both traditional statistical models and deep learning algorithms like CNN,
and LSTM. Then the optimization for a specific model is made. In the end, we will explain the result
and provide some guidance for future studies.

2. Part a: basic introduction of the deep learning models
In this project, two deep learning models and algorithms are used. They are CNN and LSTM. In this
part, the essential working process and main features of these algorithms will be described.
Firstly, CNN will be introduced simply. CNN is the abbreviation of a convolutional neural network.
Based on its name, convolution is a key part of this model. By using this model, the target data will be
expanded in vector form with certain dimensions.

For example, the following equations show how this expanded be done. X is the information of two-
dimension picture; H is an information matrix; U is a vector of bias parameters; ‘W’ and ‘V’ are weight
tensors but in different expressions. The footnotes are set that k= i + a and l= j + b because the two
tensors’ elements are bijections, and in this way, the whole picture can be covered by moving from
position (i, j).

[𝑯𝑯]𝑖𝑖,𝑗𝑗 = [𝑼𝑼]𝑖𝑖,𝑗𝑗 +��[𝑾𝑾]𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙[𝑿𝑿]𝑘𝑘,𝑙𝑙
𝑙𝑙𝑘𝑘

 = [𝑼𝑼]𝑖𝑖,𝑗𝑗 + ∑ ∑ [𝑽𝑽]𝑖𝑖,𝑗𝑗,𝑎𝑎,𝑏𝑏[𝑿𝑿]𝑖𝑖+𝑎𝑎,𝑗𝑗+𝑏𝑏𝑏𝑏𝑎𝑎

Then the convolution kernel will be set and trained by iteration and the convolution layer will be
built based on the convolution kernel and input vectors. The function of the convolution kernel is trying
to grasp the feature of the target and the convolution layer makes it possible to optimize the convolution
kernel and the weight tensor.

The next two features of CNN will be mentioned. They are translation invariance and locality.
The following equation shows the translation invariance: it means the bias parameter is a constant

and will not be affected by the position of information.

[𝑯𝑯]𝑖𝑖,𝑗𝑗 = 𝑢𝑢 + ��[𝑽𝑽]𝑎𝑎,𝑏𝑏[𝑿𝑿]𝑖𝑖+𝑎𝑎,𝑗𝑗+𝑏𝑏
𝑏𝑏𝑎𝑎

This equation shows the locality: it says the algorithm should collect the information for training in
the limit area which should not be far from (i, j).

[𝑯𝑯]𝑖𝑖,𝑗𝑗 = 𝑢𝑢 + � � [𝑽𝑽]𝑎𝑎,𝑏𝑏[𝑿𝑿]𝑖𝑖+𝑎𝑎,𝑗𝑗+𝑏𝑏

∆

𝑏𝑏=−∆

∆

𝑎𝑎=−∆

Next, LSTM will be introduced. LSTM is a special case of RNN and the full name of them are
Recurrent Neural Networks with Long Short-Term Memory. RNN is mainly used to deal with dependent

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

149

data. Auto-regressive models and Markov models are applications of RNN. The essential procedure of
RNN is quite similar to CNN to some extent,

But in this special case LSTM, has some new components. Which will be mentioned later.
The first new component is hidden state.

𝑯𝑯𝑡𝑡 = 𝜙𝜙(𝑿𝑿𝑡𝑡𝑾𝑾𝑥𝑥𝑡𝑡 + 𝑯𝑯𝑡𝑡−1𝑾𝑾ℎℎ + 𝒃𝒃ℎ)

This equation shows how the hidden state works in the algorithm.
Φ is the activate function; footnote t is the time step; X is the input; W is the weight parameters of

the hidden state; H is the hidden state; b is the bias parameters. With a hidden state, LSTM can capture
and record historical information.

𝑶𝑶𝑡𝑡 = 𝑯𝑯𝑡𝑡𝑾𝑾ℎ𝑞𝑞 + 𝒃𝒃𝑞𝑞

This equation shows the output layer, while W is the output layer weight parameters and b are the
output layer bias parameters.

The second new component is the gate. There are three types of gates: Input gate, Forget gate, and
Output gate.

𝑰𝑰𝑡𝑡 = 𝜎𝜎(𝑿𝑿𝑡𝑡𝑾𝑾𝑥𝑥𝑖𝑖 +𝑯𝑯𝑡𝑡−1𝑾𝑾ℎ𝑖𝑖 + 𝒃𝒃𝑖𝑖)

𝑭𝑭𝑡𝑡 = 𝜎𝜎(𝑿𝑿𝑡𝑡𝑾𝑾𝑥𝑥𝑥𝑥 +𝑯𝑯𝑡𝑡−1𝑾𝑾ℎ𝑥𝑥 + 𝒃𝒃𝑥𝑥)

𝑶𝑶𝑡𝑡 = 𝜎𝜎(𝑿𝑿𝑡𝑡𝑾𝑾𝑥𝑥𝑥𝑥 +𝑯𝑯𝑡𝑡−1𝑾𝑾ℎ𝑥𝑥 + 𝒃𝒃𝑥𝑥)

The sigmoid function is activation function and it makes the value range of three gates located in
(0,1). These gates can bring the data on the current time step and the former time step into the LSTM

The third new component is the memory cell. In this part, the candidate memory cell will be
introduced first.

𝑪𝑪𝑡𝑡� = tanh(𝑿𝑿𝑡𝑡𝑾𝑾𝑥𝑥𝑥𝑥 + 𝑯𝑯𝑡𝑡−1𝑾𝑾ℎ𝑥𝑥 + 𝒃𝒃𝑥𝑥)

The candidate memory cell is calculated in a quite similar way to gates and the output will be
candidates for a hidden state.

Then normal memory cells will be mentioned.

𝑪𝑪𝑡𝑡 = 𝑭𝑭𝑡𝑡⨀𝑪𝑪𝑡𝑡−1 + 𝑰𝑰𝑡𝑡⨀𝑪𝑪𝑡𝑡�

In this equation ⊙ means Hadamard Production. This equation represents the aim that: the input gate
decides how much data will be used in the candidate memory cell and forget gate decides how much
data will be used in the former time step‘s memory cell. This design can defuse the ‘gradient-disappear’
problem and can better capture the middle-long distance-dependent relationship.

After the gates and memory cell are defined, the way to calculate the hidden state is also defined

𝑯𝑯𝑡𝑡 = 𝑶𝑶𝑡𝑡⨀ tanh(𝑪𝑪𝑡𝑡)

Of course, this is one of the versions of cell memory: tanh version, which can make sure the value of
H locates in (0,1). If the output gate is close to 1, the memory information will be effectively delivered
to the prediction part, while if the output gate is close to 0, only the information contained in the memory
cell will be kept and the hidden state will not be refreshed.

In comparison, these two kinds of algorithms have their own preferred aspects. So in the remainder
of the report, the accuracy of these two algorithms will be tested and compared in the given condition.

3. Part b: game and data collection
As a part of the project, the game (see Figure 1.)played an extremely important role in collecting
experimental data, which will later be used to train the models.

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

150

Figure 1. Game display.

There are two important reasons to use games to collect experimental data:
1. Compared to data collected from real life or existing data sets on the web, we have more freedom

to obtain data in different dimensions during the experiment.
2. The game environment is ideal and not subject to accidental interference, so it is of low noise. This

is more friendly to us who are new to neural networks.
Besides it is also interesting to create our own unique dataset.

3.1. Goal of the player
During the game, the player controls the yellow ball and tries to kick the green ball into the light spot,
and he should try to Prevent the yellow ball from hitting the two red balls who are the enemy. When the
green ball and the light point collide, the light point will appear at the next random location. The player
will repeat this process for 15 minutes

3.2. The strategy of enemy1

Figure 2. Predatory path1.

Figure 2. shows enemy1's strategy is eye tracking, which means its speed direction is always toward the
player. In the picture above the predator performs like a tracking missile which is exactly what enemy1
do to the yellow ball.

3.3. The strategy of enemy2:

Figure 3. Predatory path2.

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

151

Figure 3. shows enemy2’s strategy is a little different from that of Enemy1, it has the ability to predict-
-- it will read the player’s velocity vector. It's more about intercepting players instead of just chasing.

3.4. The green ball’s movement

Figure 4. Player’s movement.

From Figure 4. for green ball, it will flee away if the player is too closed to it. To increase the playability
and difficulty of the game, a program is written to make the green ball tend to hide behind the two red
balls.
4. Part c: model build and comparison

4.1. Model build

4.1.1. CNN.
(1) Prepare the pipeline

The training set and the test set are distributed and changed the label to one-hot vector [6]:
Then normalize the data to between 0 and 1 so that the computation was reduced.
(2) set up the CNN (see code in appendix)
Structure: convolutional layer and connected layer.
Initially, using the same padding way and activation function ‘relu’ and the optimizer is ‘adam’ and

the loss function is ‘categorical_crossentropy’.
(3) Assessment strategies
Table 1. and Figure 5. show that indicators are chosen as followed: Loss ,Accuracy and Confusion

matrix
Loss

L = −[y log y� + (1 − y) log(1 − y�)]
Accuracy

Table 1. Model accuracy formula.

Original Label Tested:Positive sample Tested:Negative sample

Positive sample TP FN

Negative sample FP TN

ACC =
TP + TN

TP + FN + FP + TN

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

152

Confusion matrix

Figure 5. Model confusion matrix formula.

The result of the CNN is shown in Figure 6. and Figure 7.
Loss：

Figure 6. CNN model loss.

Accuracy (73.24%) and confusion matrix

Figure 7. CNN model accuracy and confusion matrix.

4.1.2. LSTM. Prepare the pipeline (same procedure as CNN)
set up the LSTM (see code in appendix)
Structure: LSTM cells and connected layers

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

153

Initially, using the same padding way and activation function ‘relu’ and the optimizer is ‘adam’ and
the loss function is ‘categorical_crossentropy’.
(1) assessment strategies (Same procedure as CNN), and the results are shown in Figure 8,9 and 10.

Loss:

Figure 8. LSTM Model loss.

Accuracy (65.08%) and confusion matrix

Figure 9. LSTM model accuracy.

Figure 10. LSTM model confusion matrix.

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

154

4.2. Comparison
Accuracy:

• CNN 73% (with best confusion matrix which means better classification)
• LSTM 63%
Result:
• CNN is more accurate. (with data density N = 500; dense layers = 128; batch_size = 32)

4.3. Problem analysis
Problem analysis and some optimization plans:

• The data lack some useful features, maybe another strategy.
• Data should be expanded.
• The training process should be optimized.
• We should use some strategies to avoid overfitting.
Hence, the group discussed the next optimization strategies, decided to enrich and expand the feature

of the data and use another strategy to process the data. Then the model and related algorithms will be
adjusted and optimized in order to compare the LSTM and CNN again to find the best solution.

5. Part d: optimization on LSTM
As shown in the previous section, CNN performs better than LSTM in some cases. There are limits to
such results, however. Firstly, limited by the previous operating equipment, LSTM only uses univariate
input in the input dimension, which does not reflect the advantages of LSTM [7]. Secondly, data
preprocessing is also very important in neural networks. Next, in order to verify the superiority of LSTM
in processing time series, it will also be improved in the two directions mentioned above.

5.1. Data preprocessing
Data preprocessing consists mainly of the following steps:

5.1.1. Deviation calculation. Make data represent changes in the position of objects over milliseconds.

5.1.2. Detect interfering rows of data. Some frames take significantly longer to execute than others, and
this breaks the consistency of the data recording, which can have a huge impact on subsequent training.
It is important to mark them and avoid using them in the LSTM training.

5.1.3. Select proper columns. Data in different columns may represent the same information, and it will
be inefficient to bring them all into the sequence. Therefore, in the training of LSTM, I removed all the
input data from the user, because their coordinates and the player's coordinates represented repeated
information

5.2. Model structure
The structure of the models are shown in Table 2. In the part of parameter adjustment, I adjusted the
length and dimension of input data and the number of neurons in the model, but the overall framework
did not change.

A total of two LSTM and three dense layers are used in this model. The last dense layer's activation
function is ‘sigmoid’.

The loss function, optimizer and metrics are shown as below:
model.comile(loss=‘binary_crossentropy’, optimizer=‘adam’, metrics=[‘binary_accuracy’])

5.3. Result analysis and parameter tuning
Thanks to cudNN by Nvidia, Training tasks can be completed in less time. During the parameter
adjustment part, the learning rate is 0.001 by default, and the batch size is not adjusted either, it is set to
32.

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

155

The emphasis of parameter adjustment is on length adjustment of input time series and neuron
number adjustment.

Table 2, 3 and 4. show a few comparisons:
Table 2. Time series length.

Input
shape

(200,13) (500,13) (800,13)

Model
structur

e

Loss

accurac

y

Comments: According to the loss values, different degrees of overfitting occurred in the later stage
of the training of the three models. With the increase of the input data time span, the overfitting time
also appeared later. Longer time series also take longer to train, and the accuracy of the validation set
increases with the increase of step size. Extrapolating from these three sets of data, 500 to 800 is the
optimal time series length.

lstm_input Input: [(None, 200, 13)]
InputLayer Output: [(None, 200, 13)]

lstm Input: [(None, 200, 13)]
LSTM Output: [(None, 200, 128)]

dropout Input: [(None, 200, 128)]
Dropout Output: [(None, 200, 128)]

dense Input: [(None, 200, 128)]
Dense Output: [(None, 200, 64)]

dropout_1 Input: [(None, 200, 64)]
Dropout Output: [(None, 200, 64)]

lstm_1 Input: [(None, 200, 64)]
LSTM Output: [(None, 200, 128)]

dropout_2 Input: [(None, 200, 128)]
Dropout Output: [(None, 200, 128)]

dense_1 Input: [(None, 200, 128)]
Dense Output: [(None, 200, 32)]

dense_2 Input: [(None, 200, 32)]
Dense Output: [(None, 200, 1)]

lstm_input Input: [(None, 500, 13)]
InputLayer Output: [(None, 500, 13)]

lstm Input: [(None, 500, 13)]
LSTM Output: [(None, 500, 128)]

dropout Input: [(None, 500, 128)]
Dropout Output: [(None, 500, 128)]

dense Input: [(None, 500, 128)]
Dense Output: [(None, 500, 64)]

dropout_1 Input: [(None, 500, 64)]
Dropout Output: [(None, 500, 64)]

lstm_1 Input: [(None, 500, 64)]
LSTM Output: [(None, 500, 128)]

dropout_2 Input: [(None, 500, 128)]
Dropout Output: [(None, 500, 128)]

dense_1 Input: [(None, 500, 128)]
Dense Output: [(None, 500, 32)]

dense_2 Input: [(None, 500, 32)]
Dense Output: [(None, 500, 1)]

lstm_input Input: [(None, 800, 13)]
InputLayer Output: [(None, 800, 13)]

lstm Input: [(None, 800, 13)]
LSTM Output: [(None, 800, 128)]

dropout Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense Input: [(None, 800, 128)]
Dense Output: [(None, 800, 64)]

dropout_1 Input: [(None, 800, 64)]
Dropout Output: [(None, 800, 64)]

lstm_1 Input: [(None, 800, 64)]
LSTM Output: [(None, 800, 128)]

dropout_2 Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense_1 Input: [(None, 800, 128)]
Dense Output: [(None, 800, 32)]

dense_2 Input: [(None, 800, 32)]
Dense Output: [(None, 800, 1)]

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

156

Table 3. Neuron number.

Neuron
number

-less +more

Model
structure

Loss

accuracy

Comments: Different degrees of overfitting occurred in the later stage of the training, there was no
significant difference

lstm_input Input: [(None, 800, 13)]
InputLayer Output: [(None, 800, 13)]

lstm Input: [(None, 800, 13)]
LSTM Output: [(None, 800, 128)]

dropout Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense Input: [(None, 800, 128)]
Dense Output: [(None, 800, 64)]

dropout_1 Input: [(None, 800, 64)]
Dropout Output: [(None, 800, 64)]

lstm_1 Input: [(None, 800, 64)]
LSTM Output: [(None, 800, 128)]

dropout_2 Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense_1 Input: [(None, 800, 128)]
Dense Output: [(None, 800, 32)]

dense_2 Input: [(None, 800, 32)]
Dense Output: [(None, 800, 1)]

lstm_input Input: [(None, 800, 13)]
InputLayer Output: [(None, 800, 13)]

lstm Input: [(None, 800, 13)]
LSTM Output: [(None, 800, 128)]

dropout Input: [(None, 800, 256)]
Dropout Output: [(None, 800, 256)]

dense Input: [(None, 800, 256)]
Dense Output: [(None, 800, 128)]

dropout_1 Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

lstm_1 Input: [(None, 800, 128)]
LSTM Output: [(None, 800, 128)]

dropout_2 Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense_1 Input: [(None, 800, 128)]
Dense Output: [(None, 800, 32)]

dense_2 Input: [(None, 800, 32)]
Dense Output: [(None, 800, 1)]

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

157

Table 4. Different input.

Different
inputs

Keyboard inputs Player’s coordinates

Model
structure

Loss

accuracy

Comments: When a set of continuous data (Player’s coordinates) is replaced by discrete data
(Keyboard inputs), the training effect becomes worse, overfitting occurs earlier and the accuracy of
validation set decreases.

lstm_input Input: [(None, 800, 15)]
InputLayer Output: [(None, 800, 15)]

lstm Input: [(None, 800, 15)]
LSTM Output: [(None, 800, 128)]

dropout Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense Input: [(None, 800, 128)]
Dense Output: [(None, 800, 64)]

dropout_1 Input: [(None, 800, 64)]
Dropout Output: [(None, 800, 64)]

lstm_1 Input: [(None, 800, 64)]
LSTM Output: [(None, 800, 128)]

dropout_2 Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense_1 Input: [(None, 800, 128)]
Dense Output: [(None, 800, 32)]

dense_2 Input: [(None, 800, 32)]
Dense Output: [(None, 800, 1)]

lstm_input Input: [(None, 800, 13)]
InputLayer Output: [(None, 800, 13)]

lstm Input: [(None, 800, 13)]
LSTM Output: [(None, 800, 128)]

dropout Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense Input: [(None, 800, 128)]
Dense Output: [(None, 800, 64)]

dropout_1 Input: [(None, 800, 64)]
Dropout Output: [(None, 800, 64)]

lstm_1 Input: [(None, 800, 64)]
LSTM Output: [(None, 800, 128)]

dropout_2 Input: [(None, 800, 128)]
Dropout Output: [(None, 800, 128)]

dense_1 Input: [(None, 800, 128)]
Dense Output: [(None, 800, 32)]

dense_2 Input: [(None, 800, 32)]
Dense Output: [(None, 800, 1)]

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

158

The validation set accuracy was largely maintained at approximately 85% after training using a
convolutional neural network (CNN) with optimized parameters. However, after adjusting the
parameters related to the optimizer and implementing a learning rate decay strategy, the accuracy
plateaued at around 75%. This resulted in a final accuracy of approximately 75%, which was lower than
that obtained using a LSTM model.

6. Conclusion
In the process of using deep learning method to analyze user behavior to make correct user identification,
We find that when the dimension of input data is low, the accuracy of CNN is significantly higher than
that of LSTM.

However, when the data dimension is increased, such as 13 and 15 dimensions, the classification
accuracy of LSTM is significantly improved, reaching nearly 87% accuracy. At the same time, we also
compare and analyze the results of model training under different parameters, in order to better optimize
the player classification model in the future.

This project has fully demonstrated that different players do have different behavioral characteristics
in games, and we can make classification with high accuracy by analyzing these characteristics using
neural networks.

Reference
[1] Irdeto. Grand Theft Gaming 2.0. https://resources.irdeto.com/media/e-book-grand-theft-gaming-

2-0-1?page=%2Fwhite-papers-e-books-reports&widget=61a00432c044d513b464dac5
[2] J. P. Pinto, A. Pimenta and P. Novais, "Deep Learning and Multivariate Time Series for Cheat

Detection in Video Games," 2021 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA), 2021, pp. 1-2, doi: 10.1109/DSAA53316.2021.9564219.

[3] H. Alayed, F. Frangoudes and C. Neuman, "Behavioral-based cheating detection in online first
person shooters using machine learning techniques," 2013 IEEE Conference on Computational
Inteligence in Games (CIG), 2013, pp. 1-8, doi: 10.1109/CIG.2013.6633617.

[4] Politowski, Cristiano & Guéhéneuc, Yann-Gaël & Petrillo, Fabio. (2022). Towards Automated
Video Game Testing: Still a Long Way to Go.

[5] S. F. Yeung, J. C. S. Lui, Jiangchuan Liu and J. Yan, "Detecting cheaters for multiplayer games:
theory, design and implementation," CCNC 2006. 2006 3rd IEEE Consumer Communications
and Networking Conference, 2006., 2006, pp. 1178-1182, doi: 10.1109/CCNC.2006.1593224.

[6] Etheredge, Marlon & Lopes, R. & Bidarra, Rafael. (2013). A generic method for classification of
player behavior. AAAI Workshop - Technical Report. 2-8.

[7] Zhou, ZH. (2021). Model Selection and Evaluation. In: Machine Learning. Springer, Singapore.
https://doi.org/10.1007/978-981-15-1967-3_2

Appendix
Code
CNN

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

159

LSTM

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/19/20230523

160

