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Abstract. This paper explores the necessary conditions for extremum in both constrained and 

unconstrained problems by extracting fundamental principles of constraint conditions. We 

provide a precise geometric understanding of the Lagrange Multiplier, prioritizing analytical 

insight. Beginning with a geometric interpretation of the gradient, we leverage the expansion of 

functions and their images to comprehend extremum and detail the Lagrangian derivation 

process.We expand the base vectors of the constraint surface into those of the full space and use 

a transition matrix to assess the function's extremum. This demonstrates how the second 

derivative matrix is transformed into its full-space representation to discern extrema in 

optimization problems. Additionally, we introduce incremental variables to optimize the second-

order derivative matrix in full space, providing a novel perspective to solve extremal necessary 

conditions. 
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1.  Introduction 

Since the introduction of Dantzig's simplex method in 1947, optimization has undergone significant 

development. Novel techniques continue to emerge, and practical applications are constantly evolving, 

particularly with the growth of internet software technology. Optimization problems now play a pivotal 

role in Machine Learning and Deep Learning. The primary goal of solving an optimization problem is 

to identify the optimal solution of the objective function within the constraints associated with it. In 

nonlinear programming, for example, we need to solve the gradient of the objective function to locate 

the extremum. If the optimization problem is constrained, we must identify the extremum of the 

objective function within the predefined constraints. Thus, finding the extremum of a function plays a 

critical role in solving optimization problems. 

Despite the abundance of algorithms and their various applications, many learners struggle with 

optimization problems due to a lack of understanding the essence of constraints and extrema. 

Additionally, there is a lack of comprehensive comprehension regarding the necessary conditions for 

extrema and their derivation. Our paper addresses these issues by examining the derivation of the 

Lagrange multiplier method as a case study and conducting a thorough examination of the conditions 

for extrema. 
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The Lagrange multiplier method helps determine local extrema of a multi-variable function subject 

to constraints and transforms an optimization problem with "d" variables and "k" constraints into a 

system of equations with "d+k" variables. Our paper provides a comprehensive analysis and 

mathematical derivation of the geometric interpretation of gradients, expansion of multivariate functions, 

extremum conditions, and constrained optimization problems. By approaching the problem from a 

differential perspective, we derive the necessary conditions for extrema of multivariate functions, 

incorporating knowledge related to quadratic forms and the Hessian matrix. Furthermore, through the 

derivation of the Lagrangian, we present a comparative analysis of the necessary conditions for extrema 

in unconstrained and constrained problems, advocating for an understanding of the essence of the 

Lagrange multiplier from both the perspectives of the full space and the constraint surface. 

2.  Geometric significance of the gradient 

The Hamilton operator 𝛻, referred to as the nabla operator, is defined as an operator in vector calculus. 

It represents the vector aggregate of partial derivatives for a physical quantity in coordinate directions. 

𝛻 = ∑𝒆𝒊

𝑛

𝑖=1

𝜕

𝜕𝑥𝑖
(1) 

We call vector 𝛻𝑓as gradient of the function 𝑓(𝑥1, 𝑥2,⋯ , 𝑥𝑛) 

𝛻𝑓 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑛
)
𝑇

(2) 

We observe that  

d𝒙 = (d𝑥1, d𝑥2,⋯ , d𝑥𝑛) (3) 

The gradient extends the concept of the derivative to functions with multiple variables. Just as the 

derivative measures the rate of change of a single-variable function, the gradient is a vector containing 

the partial derivatives of a multivariable function, representing its rate of change in each variable. It 

provides a comprehensive description of how the function changes in every direction within its input 

space, similar to the role of the derivative in single-variable calculus, which explains instantaneous 

change at a specific point. 

By Cauchy-Schwarz inequality 

∑
𝜕𝑓

𝜕𝑥𝑖

𝑛

𝑖=1

d𝑥𝑖 ≤ √∑(
𝜕𝑓

𝜕𝑥𝑖
)

𝑛

𝑖=1

2

√∑ d𝑥𝑖
2

𝑛

𝑖=1

(4) 

We define the cosine between 𝛻𝑓 and d𝐱 to be 

cos𝜃 =
∑

𝜕𝑓
𝜕𝑥𝑖

d𝑥𝑖
𝑛
𝑖=1

√∑ (
𝜕𝑓
𝜕𝑥𝑖

)𝑛
𝑖=1

2

√∑ d𝑥𝑖
2𝑛

𝑖=1

(5)
 

Thus 

∑
𝜕𝑓

𝜕𝑥𝑖
d𝑥𝑖 = √∑(

𝜕𝑓

𝜕𝑥𝑖
)
2𝑛

𝑖=1

√∑ d𝑥𝑖
2

𝑛

𝑖=1

cos 𝜃

𝑛

𝑖=1

(6) 

Equation (6) reveals several properties of gradients. When the modulus of √∑ d𝑥𝑖
2𝑛

𝑖=1   is constant, a 

smaller angle between two vectors d𝒙 and 𝛻𝑓corresponds to a larger value for d𝒙. This means that the 

function increases most rapidly in the direction of the gradient and decreases most rapidly in the opposite 

direction. Moreover, the rate of change is perpendicular to the gradient's direction. 
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For a multivariate function ℝn → ℝ , if we want further information about the second-order 

derivatives, we must differentiate the function twice. From this, we can construct the Hessian matrix by 

combining the second-order partial derivatives of each independent variable. 

𝐻(𝑓) =

[
 
 
 
 
 
 

𝜕

𝜕𝑥1
𝜕

𝜕𝑥2
⋯
𝜕

𝜕𝑥𝑛]
 
 
 
 
 
 

[
𝜕𝑓

𝜕𝑥1
,

𝜕𝑓

𝜕𝑥2
, ⋯ ,

𝜕𝑓

𝜕𝑥𝑛
] = 𝛻(𝛻𝑥𝑓(𝑥)) (7) 

Hessian matrix contains details about the gradients' changes across each independent variable and 

serves as an extension of the gradient in terms of depth or higher-order differentiation. 

3.  Sufficient and necessary conditions for extremal of unconstrained problems 

For the n-variable real-valued function, denoted as 𝑓(𝐱) = 𝑓(𝑥1, 𝑥2,⋯ , 𝑥𝑛). 
Assume 𝑥0 is a local minimumand there are no constraints. If 𝑥0 is a local extremum, then the first 

derivative test implies that at this point, the derivative of 𝑓(𝐱) in any direction must be zero. In other 

words, the directional derivative of 𝑓(𝐱) at 𝑥0 in any direction 𝐯 is zero. To put it mathematically: 

𝛻𝑓(𝑥0)𝐯 = 𝟎 (8) 

This condition indicates that the gradient is orthogonal to all vectors in the domain, meaning it must 

be zero vector. If the gradient were not zero, it would imply that there exists a direction in which the 

function is increasing or decreasing, contradicting the assumption that 𝑥0 is a local extremum. 

When 𝛻𝑓 = 0,in order to determine the sufficient condition of function, we have to conduct a second 

derivative test.  

By Taylor expansion, for sufficiently small (𝜀 > 0), any nonzero vector 𝐯,we have: 

𝑓(𝑥0 + 𝜀𝐯) = 𝑓(𝑥0) + 𝜀𝛻𝑓(𝑥0)
𝑇𝐯 +

𝜀2

2
𝐯𝐓𝐻(𝑥0)𝐯 + 𝑜(𝜀2) (9) 

Where 𝑥0 is the expansion point, 𝛻𝑓(𝑥0) = 0 is the gradient, and 𝐻(𝑥0) is the Hessian matrix. 

Since 𝑓(𝑥0 + 𝜀𝐯) − 𝑓(𝑥0) ≥ 0  holds for all small 𝜀 > 0. Ignoring higher-order infinitesimal terms 

𝑜(𝜀2), the above equation becomes: 

𝜀𝛻𝑓(𝑥0)
𝑇𝐯 +

𝜀2

2
𝐯𝑻𝐻(𝑥0)𝐯 ≥ 0 (10) 

Because 𝜀 > 0 can be arbitrarily chosen, setting 𝜀 = 1, we obtain: 

𝛻𝑓(𝑥0)
𝑇𝐯 +

1

2
𝐯𝑻𝐻(𝑥0)𝐯 ≥ 0 (11) 

Since 𝛻𝑓(𝑥0)
𝑇𝑣 = 0 (due to 𝑥0 being a local minimum), we have  

1

2
𝐯𝐓𝐻(𝑥0)𝐯 ≥ 0 

Or 

𝐯𝐓𝐻(𝑥0)𝐯 ≥ 0 

4.  Lagrange multiplier 

For the n-variable real-valued function, denoted as 𝑓(𝐱) = 𝑓(𝑥1, 𝑥2,⋯ , 𝑥𝑛). 
If there are constraint conditions, the independent variable can only be active within the constraint 

space. To achieve extremal under such constraints, it is necessary to ensure that the variation rate of the 

function is zeroed in all feasible directions of independent movement. 

Provided constraint condition 

𝑔𝑖(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = 0, 𝑖 = 1,2,⋯ ,𝑚 (12) 

Since vectors perpendicular to the isosurfaces are gradient vectors, then vectors perpendicular to the 

constraint space Eq(3.1) are 
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𝛻𝑔𝑖(𝐱) = (
𝜕𝑔𝑖

𝜕𝑥1
,
𝜕𝑔𝑖

𝜕𝑥2
, ⋯ ,

𝜕𝑔𝑖

𝜕𝑥𝑛
) (13) 

The final constraint space is the intersection of these m constraint spaces, and since the variables can 

only move within the constraint space that perpendicular to the gradient direction, the linear 

superposition of the gradients of each constraint space is  

∑𝜆𝑖𝛻𝑔𝑖(𝑥1, 𝑥2,⋯ , 𝑥𝑛) = ∑𝜆𝑖

𝑚

𝑖=1

𝑚

𝑖=1

(
𝜕𝑔𝑖

𝜕𝑥1
,
𝜕𝑔𝑖

𝜕𝑥2
, ⋯ ,

𝜕𝑔𝑖

𝜕𝑥𝑛
)𝑇 (14) 

So that the necessary condition of the extremum is [2] 

𝛻𝑓(𝑥) = ∑𝜆𝑖𝛻𝑔𝑖

𝑚

𝑖=1

(15) 

We introduce the Lagrangian function 

𝐿(𝑥, 𝜆) = 𝑓(𝐱) + ∑𝜆𝑖𝑔𝑖(𝐱)

𝑚

𝑖=1

(16) 

Then the above system of equations can be reformulated as 

{
𝛻𝐿(𝑥, 𝜆) = 𝟎

𝑔𝑖(𝐱) = 0, 𝑖 = 1,2,⋯ ,𝑚
(17) 

5.  Novel perspective of the necessary conditions for second-order derivatives 

We have previously discussed the distinctions between unconstrained and constrained conditions, as 

well as the second-order derivative tests conducted to examine the sufficiency of extrema conditions. 

Now, let us shift our focus to addressing second-order derivative problems in the context of constrained 

conditions.[3] 

According to our understanding of equation (8) and equation (16), we need to perform a second order 

derivative test 

𝛻 (𝛻𝑓(𝒙) + ∑𝜆𝑖𝛻𝑔𝑖(𝒙)

𝑚

𝑖=1

) = 𝛻2𝑓(𝒙) + ∑𝜆𝑖𝛻
2𝑔𝑖

𝑚

𝑖=1

(𝒙) (19) 

The necessary condition for the function to attain an extremum at points where the gradient is zero 

is that 𝛻2𝑓(𝐱) + ∑ 𝜆𝑖𝛻
2𝑔𝑖(𝐱)

𝑚
𝑖=1  must be negative definite. However, given that the independent 

variable 𝒙 can only operate within the final constraint surface, it is sufficient to satisfy the positive 

definiteness or positive semi-definiteness of 𝛻2𝑓(𝐱) + ∑ 𝜆𝑖𝛻
2𝑔𝑖(𝐱)

𝑚
𝑖=1  within the linear subspace of the 

final constraint surface. 

The Taylor expansion is given by 

 𝑓(𝐱 + ∆𝐱) = 𝑓(𝐱) + 𝛻𝑓(𝒙)∆𝒙 +
1

2
∆𝐱𝐓𝐇∆𝐱 + 𝐨(||∆𝐱||

𝟐
) (20) 

For Lagrangian function 

𝐿(𝑥, 𝜆) = 𝑓(𝐱) + ∑𝜆𝑖𝑔𝑖(𝐱)

𝑚

𝑖=1

(21) 

By taking the derivatives with respect to 𝑥 and 𝜆, and setting them to zero, we obtain the Karush-

Kuhn-Tucker conditions. 

{
𝛻2𝑓(𝐱) + ∑𝜆𝑖𝛻

2𝑔𝑖(𝐱)

𝑚

𝑖=1

= 0

𝑔𝑖(𝐱) ≤ 0, 𝛌𝐢 ≥ 0, 𝛌𝐢𝑔𝑖(𝐱) = 0

(22) 

Based on the KKT conditions of constrained optimization problems and convex optimization theory, 

we can draw the following conclusion: if 𝑥∗ is a local minimum point of a convex optimization problem, 

then there exists a vector operator 𝜆∗
𝑖 such that [4] 
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𝛻2𝑓(𝒙) + ∑𝜆∗
𝑖𝛻

2𝑔𝑖(𝐱
∗)

𝑚

𝑖=1

= 0 (23) 

and 𝛻2𝑓(𝐱) + ∑ 𝜆𝑖𝛻
2𝑔𝑖(𝐱)

𝑚
𝑖=1  is a semi-positive definite matrix or positive definite matrix. 

Constructing a Lagrangian function converts a constrained problem into an unconstrained one. From 

the perspective of base vectors, this process expands the base vectors of the constraint space to 

encompass the full space base vectors. In constrained cases, the limitations imposed by constraints 

prevent us from directly computing the second-order derivatives of the variables to determine the 

extremum. To overcome this, we select a set of base vectors in the constraint space, which represents 

the constraint plane, and expand them to form a set of base vectors in the full space using a transition 

matrix. Assuming that the transition matrix from the original base vectors to the constraint space base 

vectors is 𝐒. Then the second-order derivative matrix within the constraint space can be expressed as 

𝐇′ = 𝐒𝐓𝐇𝐒, and we can to determine the extremum by 𝐇′. 

For example, solving a quadratic optimization problem with constraints 

𝑚𝑖𝑛 𝑓 (𝒙) =
1

2
𝐱𝐓𝐇𝐱 + 𝐜𝐓𝐱 (24) 

Where 𝐱 ∈ ℝ𝑛 is a vector of optimization variables, H is Hessian matrix of 𝑓(𝒙), and 𝐜 ∈ ℝ𝑛 is a 

constant vector.  Simultaneously there are m constraints 

𝑔𝑖(𝑥1, 𝑥2,⋯ , 𝑥𝑚) ≤ 0 

Select a set of base vectors on the constraint space 
{𝐯𝟏, 𝐯2,⋯ , 𝐯n−m} 

Expanding these base vectors to a set of base vectors in full space, such as 
{𝐯𝟏, 𝐯2, 𝐯n−m, 𝐰n−m+𝟏, 𝐰n−m+2,⋯ ,𝐰n} 

{𝐰n−m+𝟏, 𝐰n−m+2,⋯ ,𝐰n} is a set of base vectors orthogonal to {𝐯𝟏, 𝐯2,⋯ , 𝐯n−m}. In this way, we 

can represent the optimized variable vector 𝐱 as 

𝐱 = 𝐒𝐲 + ∑ 𝛼𝑖𝐰𝐢

𝑛

𝑖=𝑛−𝑚+1

(25) 

Where S is a 𝑛 × (𝑛 − 𝑚) transition matrix, whose column vector is the base vector of the constraint 

space {𝐯𝟏, 𝐯2,⋯ , 𝐯n−m}, 𝐲 ∈ ℝ𝑛−𝑚is a novel unknown vector and 𝛼𝑖is constants. By substituting 𝐱 into 

the original problem, we derive [5] 

𝑓(𝐱) =
1

2
𝐱𝐓𝐇𝐱 + 𝐜𝐓𝐱 =

1

2
(𝐒𝐲 + ∑ 𝛼𝑖𝐰𝐢

𝑛

𝑖=𝑛−𝑚+1

)𝑇𝐇(𝐒𝐲 + ∑ 𝛼𝑖𝐰𝐢

𝑛

𝑖=𝑛−𝑚+1

) + 𝐜𝐓(𝐒𝐲 + ∑ 𝛼𝑖𝐰𝐢

𝑛

𝑖=𝑛−𝑚+1

)  

(26) 

We can express 𝐇 as a linear combination with respect to the base vectors, and 𝝀𝒊𝝁𝒊 are constants 

𝐇 = ∑ 𝛌𝐢𝐯𝐢𝐯𝐢
𝐓 + ∑ 𝛍𝐢𝐰𝐢𝐰𝐢

𝐓

n

i=n−m+1

n−m

i=1

(27) 

By utilizing an orthogonal matrix U and a transitional matrix S, we express H in its complete spatial 

form. 

𝐇′ = 𝐔𝐓𝐇𝐔 = ∑ 𝛌𝐢

n−m

i=1

𝐔𝐓𝐯𝐢𝐔𝐔𝐓𝐯𝐢𝐔
𝐓 + ∑ 𝛍𝐢𝐔

𝐓𝐰𝐢𝐔𝐔𝐓𝐰𝐢𝐔
𝐓

n

i=n−m+1

(28) 

Notice that 𝐔𝐓𝐯𝐢 = 𝐞𝐢, where 𝐞𝐢 is the ith unit vector, thus, the simplified equation is 

𝐇′ = ∑ 𝛌𝐢𝐞𝐢𝐞𝐢
𝐓

n−m

i=1

+ ∑ 𝛍𝐢𝐔
𝐓𝐰𝐢𝐰𝐢

𝐓𝐔

n

i=n−m+1

(29) 
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Since the second-order derivative matrix𝐇in the constraint space is obtained after the transformation 

in the form of 𝐇′ over the full space, the extremal case of the optimization problem can be determined 

through 𝐇′. 

Going one step further and introducing incremental variables  

∆𝐱 = 𝐒∆𝐱′ (30) 

So that 

∆𝐱𝐓𝐇∆𝐱 = ∆𝐱′
𝐓

𝐒𝐓𝐇𝐒∆𝐱′ (31) 

Under full space 𝐇′can be optimized as [6] 

𝐇′ = 𝐒𝐓𝐇𝐒 = (
A B
BT C

) (32) 

Where 𝐴 is a symmetric matrix of order(𝑛 − 𝑚) × (𝑛 − 𝑚),  𝐵 is a matrix of order (𝑛 − 𝑚) × 𝑚, 

and 𝐶 is a matrix of order 𝑚 × 𝑚. The necessary conditions for obtaining the extrema only require 𝐴 to 

be semi-positive definite or semi-negative definite. 

6.  Conclusion 

Correct, the necessary condition for the optimization problem with constraints is that the 

matrix 𝛻2𝑓(𝐱) + ∑ 𝜆𝑖𝛻
2𝑔𝑖(𝐱)

𝑚
𝑖=1  is negative definite at the critical point where the gradient is zero. 

However, because the variables are constrained to the final constraint surface, it is sufficient to have a 

positive definite or semi-positive definite of  𝛻2𝑓(𝐱) + ∑ 𝜆𝑖𝛻
2𝑔𝑖(𝐱)

𝑚
𝑖=1  within the linear subspace of 

the final constraint surface. The Lagrange function is used to convert a constrained problem into an 

unconstrained problem, and constructing the Lagrange function can be viewed as one of the processes 

of expanding the base vectors of the constraint surface to the base vectors of the full space. By 

introducing the transition matrix 𝐒, we can expand the base vectors of the constraint surface to a 

complete set of base vectors in the whole space and judge the extremum via the matrix 𝐇′. 

In retrospect, whether dealing with constrained or unconstrained extremum problems, we can 

approach them from a geometric perspective. By establishing a linear space based on the given 

constraints, we can simplify complex extremum problems by interpreting gradients in geometric terms. 
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