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Abstract. Scientifically predicting the annual failure quantity of smart meters is of significant 

importance for enhancing the economic benefits of smart meters and promoting the stable 

operation of smart grids. In this paper, traditional Grey Markov prediction models and Grey 

Markov models with weakened buffering operators are employed to predict smart meter failure 

data. To improve prediction accuracy, an Induced Ordered Weighted Averaging (IOWA) operator 

is introduced to construct a combination prediction model. Based on this approach, we predict 

the annual failure quantity of smart meters for a certain company in Wuhan, China, from 2020 

to 2022 using data from 2012 to 2019. Accuracy indicators, such as correlation degree (G) and 

average relative error (P), have improved from level three to level two, indicating that the 

combination prediction model based on the IOWA operator effectively enhances prediction 

accuracy. This method demonstrates the feasibility and effectiveness of predicting smart meter 

failures. 
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1.  Introduction 

As global attention to energy conservation, emissions reduction, and sustainable development increases, 

carbon reduction policies have become important objectives in many countries and regions. The 

electricity industry, as a significant contributor to carbon emissions, faces pressure to reduce emissions. 

Maintenance and failure prediction of smart meters can help identify and repair faulty meters in a timely 

manner, reducing energy waste and electricity loss. Faulty meters during operation can lead to energy 

wastage of over 10%. Precise prediction and repair of these meters can reduce energy consumption and 

carbon emissions. Additionally, real-time monitoring and prediction of faulty meters enable electricity 

providers to take preemptive measures, reducing downtime and enhancing power supply reliability. 

Scholars both domestically and internationally have conducted research related to the evaluation and 

lifespan prediction of smart meters. Reference [1] addresses the issue of reliability prediction for smart 

meters and proposes a Time Delayed Bayesian Network (TDBN) model, which updates conditional 

probability tables by adding cross-correlation coefficients and time shifts to improve prediction accuracy. 

Reference [2] builds a degradation model for meters based on failure data from accelerated lifespan tests 

and estimates the parameters of the Wiener model using the Maximum Likelihood method, thereby 
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introducing a smart meter reliability and lifespan prediction model that accounts for nonlinear effects. 

Reference [3] uses polynomial regression to establish the relationship between the physical properties 

and lifespan of smart meters based on daily operational data of smart meters and regional transformers, 

thus creating a lifespan prediction model. Reference [4] employs the random forest algorithm to build a 

smart meter lifespan prediction model by mining and analyzing accumulated data from numerous smart 

meters. Reference [5] develops a method for smart meter fault recognition based on the Apriori and C5.0 

algorithms, obtaining initial prediction rules through data mining and association rule mining. Reference 

[6] addresses the characteristics of smart meter fault data and employs normal distribution 

complementation and box plot methods for data preprocessing, eliminating irrelevant features and 

resolving issues related to imbalanced fault data. Reference [7] combines time information with 

spatiotemporal convolutional neural networks to construct a smart meter fault prediction model and 

optimizes its parameters using the Adam algorithm. Reference [8] designs a deep neural network 

structure capable of extracting deep attributes of faulty data, using a cost-sensitive multiclass XGBoost 

model to address the issue of imbalanced multi-class smart meter fault prediction. Reference [9] 

constructs a smart meter fault identification model based on metering data and various factors 

influencing smart meter faults to predict whether smart meters will experience metering or non-metering 

faults. Reference [10] designs a vertical analysis model for running smart meter fault data to evaluate 

the quality of a batch of meters through fault data analysis. 

The aforementioned references [1-4] mainly focus on predicting the remaining lifespan of smart 

meters, while references [5-9] pertain to the prediction of smart meter fault types, involving various 

stress models that require substantial computational resources and are challenging to apply in industrial 

practice. Reference [10] addresses the prediction of smart meter fault data. Furthermore, the models 

constructed in the above references mostly rely on single models for prediction and demand extensive 

sample data and substantial computations to achieve accurate predictions. For small-sample and 

information-scarce smart meter lifespan or fault data, these models face difficulty in making accurate 

judgments. To address this issue, this paper utilizes Grey Markov models, which exhibit good 

performance in predicting small-sample data, to predict smart meter failures. In response to the 

limitation of traditional single prediction models that provide limited information from a single 

perspective, this paper proposes a combination optimization prediction method. It first uses Grey 

Markov models and Grey Markov models with weakened buffering operators to make individual 

predictions. Subsequently, it employs the IOWA operator to calculate the optimal weight coefficients for 

the two individual prediction models, resulting in a combination prediction model for predicting the 

annual failure quantity of smart meters. Practical cases demonstrate that this combination prediction 

method can achieve accurate predictions with only a small amount of smart meter failure data, providing 

an effective solution for smart meter maintenance and management. 

2.  Grey Model 

2.1.  Grey System Theory 

Grey system theory is a mathematical approach for dealing with systems that possess incomplete 

information and uncertainty. It describes the dynamic behavior of a system by establishing grey 

differential equations and utilizes grey correlation to analyze the development trends and patterns of the 

system. Grey prediction, established by the renowned scholar Ju-Long Deng in the 1980s, revolves 

around the core idea of reducing the randomness of disordered sequences through accumulation or 

attenuation, resulting in structured data sequences that can be analyzed [11]. This method is highly 

effective for predicting future values of systems characterized by “small samples” and “scarce 

information.” 

2.2.  Application of Grey Theory in Predicting Smart Meter Failure Data 

Smart meter failures originate from complex sources, and the changes in smart meter failure data 

constitute a complex dynamic process with random fluctuations. It is challenging to acquire a substantial 
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amount of accurate and comprehensive statistical data on associated factors. The Grey GM(1,1) Markov 

model is particularly suited for the analysis and prediction of problems with limited, unprototypic, 

complex, and uncertain data. It serves to attenuate the random factors within irregular initial data 

sequences, thereby enhancing and revealing the inherent patterns within the data sequences. 

2.3.  Construction of Grey Prediction Models (GM Models) 

Construction Steps: 

(1) x(0)(k) represents the original failure data column. To ensure the feasibility of the GM(1,1) 

modeling method, necessary verification and processing of the known data are required. 

(0)

(0)

( 1)
( ) , 2,3,.....,

( )

x k
k k n

x k


−
= =

                        (1) 

If all the ratios fall within the allowable coverage interval X, a grey model can be established. 
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−

+ +=
                               (2)

 

Otherwise, appropriate data transformations are applied, such as translation:
 

(0) ( ) (0)( ) , 1,2,.....,y k x k c k n= + =
                       (3)

 

Where c is chosen to ensure that all level ratios of the data column fall within the allowable coverage. 

(2) Establishment of the grey differential equation for the model: 

(0) (1)( ) ( )x k z k q+ =
                             (4)

 

Where α and q represent the development coefficient and grey action quantity, and z (1)(k) denotes 

the adjacent values and sequences of x(0)(k). 

(3) Determination of equation parameters through the least squares method: a=(α,q)T=(BTB)−1BTY, 

where 
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(4) Establishment of the whitening differential equation: 

(1)
(1)dx

ax q
dt

+ =                                (6) 

(5) Construction of the time response function: 
(1)

(0)( 1) (1 )( (1) ) , 1,2,.....a atq
x t e x e t n

a

−+ = − − =
︿

                      (7) 

(6) Original numerical prediction: 
(0) (1) (1)

( 1) ( 1) ( )x t x t x t+ = + −
︿ ︿ ︿

                         
 (8) 

Where x (0) is the original sequence, and x (1) is the cumulative sequence. 
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3.  Grey Model with Weakened Buffer Operator 

3.1.  Theoretical Basis of the Weakened Buffer Operator 

Compared to traditional grey models, the weakened buffer operator can enhance the weight of new 

information while attenuating the influence of earlier variations. Therefore, when the growth (decay) 

rate of the first half of the original data sequence is faster, and the growth (decay) rate of the second half 

is slower, applying the constructed weakened buffer operator to the original data sequence results in a 

smoother sequence. Additionally, it adheres to the principle of prioritizing new information, meaning 

that the most recent information remains unchanged under the buffer operator’s influence. Consequently, 

it significantly improves the modeling accuracy of prediction models. The weakened buffer operator 

effectively eliminates disturbances caused by abrupt changes in the system data sequence during the 

modeling and prediction process [12, 13]. 

3.2.  Construction of the Grey Model with Weakened Buffer Operator 

(1) Construct a new sequence: 

(0) (0) (0) (0)

(0)

1
( ) ( ( ) ( 1) ..... ( )

1

1
( ), 1,2,.....,

1

n

j t

y t x t x t x n
n t

x j t n
n t =

= + + + +
− +

= =
− +


             (9) 

In the construction of the buffer operator described above, each time the transformation occurs, the 

weights for n-t+1 data points are identical, all being 1/(n-t+1). This implies that these n-t+1 data points 

contribute equally to the predicted value, which clearly does not align with the “closeness principle.” To 

better consider the impact of new information, a weighted operation is performed on the data. 

(2) Weighted operation: 
(0) (0) (0)

(0)

(0)

( ) ( 1) ( 1) ..... ( )
( ) 2

( 1)( )

1
2 ( ), 1,2,.....,

( 1)( )
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y t

n t n t

ix i t n
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=
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= =
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In this operation, the sum of angular codes of the data sequence is used as the denominator for the 

weights, while the angular code position of each data point in the summed data serves as the numerator 

for the weights. This approach better reflects the importance of new data, thus increasing the contribution 

of new data to the prediction value. It adheres to the “closeness principle,” and the predicted values 

obtained in this manner are theoretically more accurate, restoring them closer to the initial values. 

4.  Markov Chain Correction 

4.1.  The Theoretical Basis of Markov Chain Correction 

Markov chains primarily study the probabilistic relationships between states that may exhibit mobility. 

The probability of transitioning to a particular state depends solely on the current state and is 

independent of other states. Due to the inherent fluctuation and randomness in the original sequence, the 

GM(1,1) prediction model can have some errors in practical applications. This paper extensively 

overcomes the limitations of the original model’s data fluctuations by using first-order Markov chains 

for residual correction [14]. One of the main characteristics of Markov chains is their lack of memory, 

that is: 

t 1 1 1 1 0 0( | ) ( | , ,..., )t t t t t tP X j X i P X j X i X i X i+ + − −= = = = = = =
         

(11)
 

Where Xn∈Ej , for any t∈E, i∈E. 
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4.2.  Correction Process: 

(1) Establishment of the State Transition Matrix: 

The relative residuals ε of the grey model and the grey model with the weakened buffer operator are 

used to divide the correction state intervals based on their magnitudes. Each interval is equally divided 

with the same spacing, and equal subintervals Ei=[Li, Ui] are established. Finally, a first-order state 

transition matrix Pij is constructed. This matrix reflects the likelihood of transitions between various 

residual state intervals, that is, the probability of moving from the current state to the next state: 

11 12 1

21 22 2

... ...

( ) ...

... ... ... ...

n

ij n

p p p

p p p p p

 
 

= =  
 
 

                      (12) 

Where 
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j
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=

 =  

Pij represents the probability of transitioning from state i to state j, and the transition matrix for 

moving n steps can be derived as: 

( ) (1)[ ]n

nP P=
                             

 (13) 

(2) Corrected Prediction: 

Specific intervals Ei are determined through the transition matrix. The corrected values for the Grey 

Markov model and the Grey Model with Weakened Buffer Operator are calculated as: 

(0)ˆ ( )

1 0.5 ( )i i

x k
y

L U
=

  +
                          

 (14) 

5.  Traditional Grey Markov Model for Failure Prediction 

Based on the methods mentioned above, which involve the Grey Model and Markov correction chain, 

we conducted traditional Grey Markov prediction on the maintenance data of smart meters for a certain 

company in Wuhan, as shown in Table 1, covering the years 2012 to 2019. By fitting the data from the 

first 8 years, we constructed a traditional Grey Markov model and applied it to predict the data for the 

years 2020 to 2022 to assess its predictive accuracy. The total number of smart meters in this batch was 

27,000. 

Table 1. Maintenance Data for Smart Meters in a Wuhan Company 

Using the Grey Model: 

(0)

(1) 100x =
,

(0)

(2) 131x =
,

(0)

(3) 173x =
,

(0)

(4) 231x =
,

(0)

(5) 348x =
,

(0)

(6) 435x =
,

(0)

(7) 605x =
,

(0)

(8) 782x =
 

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Failure Count 100 131 173 231 348 435 605 782 903 1060 1302 
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Figure 1. Relative Residual Values Predicted by 

the Traditional Grey Model 

Figure 2. Predicted Values after Markov Chain 

Correction 

Based on the establishment of the traditional Grey prediction model as described in section 2.2, 

relative residuals ε(k) were obtained, as shown in Figure 1. These residuals were divided into three 

corresponding state intervals: [-0.031, -0.0075], [-0.0075, 0.016], and [0.016, 0.0395], following the 

Markov chain correction method outlined in section 3.2. This yielded the predicted values of the Grey 

Markov model, which are presented in Table 2. 

Table 2. Predicted Values by the Traditional Grey Markov Model 

6.  Fault Prediction with Grey Markov Model and Weakened Buffer Operator 

 

Figure 3. Actual Fault Data for Smart Meters from 2012 to 2019 

Analyzing the data in Figure 3, it is evident that there was a relatively smooth increase in faults from 

2012 to 2015, followed by an upward trend from 2015 to 2019. To achieve precise prediction for fault 

data from 2020 to 2022, it is essential to weaken the influence of earlier variations and enhance the 

Year 2012 2013 2014 2015 2016 2017 2018 2019 

Failure Count 100 85.018 207.956 239.321 342.345 453.934 662.544 751.943 
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contribution of new information. The introduction of the weakened buffer operator effectively achieves 

this and reduces prediction errors. 

Utilizing the weakened buffer operator and the Markov correction chain methods described earlier, 

we conducted fault prediction with the Grey Markov model while applying the weakened buffer operator 

to the data in Table 1. We constructed a sequence after processing with the weakened buffer operator. 

(0)

(1)y 180.5=
,

(0)

(2)y 256.2=
,

(0)

(3)y 341.9=
,

(0)

(4)y 465.2=
,

(0)

(5)y 616.1=
 

The aforementioned sequence was subjected to level ratio testing, and it was found that it did not fall 

within the allowable coverage interval X. To address this, a translation process was applied, resulting in 

the sequence: 
(0)

(1)y 1180.5=
,

(0)

(2)y 1256.2=
,

(0)

(3)y 1341.9=
,,

(0)

(4)y 1465.2=
,

(0)

(5)y 1616.1=
 

Using the least squares method, we obtained a = -0.085 and b = 1089.4. The GM(1,1) grey differential 

equation was transformed into the corresponding white differential equation:
 (1)

(0) 0.0851089.4 1089.4
( 1) ( (1) ) , 1,2,.....

0.085 0.085

ty t y e t n+ = − − =
−

︿

          
 (15)

 

This allowed us to calculate: 
(0) (1) (1)

( 1) ( 1) ( )y t y t y t+ = + −
︿ ︿ ︿

                      
 (16)

 
Through a reverse transformation of the buffer operator sequence, the corresponding predicted values 

were deduced: 
(0)

(5) 1313.8x


= ,

(0)

(6) 1489.08x


= ,

(0)

(7) 1603.28x


= ,

(0)

(8) 1737.73x


=  
By substituting the relative residual values ε(k) into the Markov chain and applying the necessary 

residual correction, we obtained the corrected predicted values. Finally, subtracting the translation factor 

c = 1000 yielded the ultimate practical predicted values in Table 3. 

Table 3. Predicted Values with Weakened Buffer Operator Grey Markov Model 

The predicted values were subjected to error testing, and the accuracy levels are presented in Table 

4. The original sequence’s variance was s1
2, and the average relative error was p=0.0647, falling within 

the third level of accuracy. The correlation coefficient λ was calculated as the discrimination coefficient, 

taken as 0.5. Thus: 

min max

(0)

max

( )
( )

g k
k

 

 

+
=

+
                           

(17) 

Where εmin and εmax represent the minimum and maximum residual values of the prediction results, 

respectively: 

1

1
( ) 0.767

1

n

k

G g k
n =

= =
−


                         

 (18) 

G falls within the third level of accuracy: 
(0) (0)( ( ) ( ) 0.6745 1) 1k k s =  −  =

                  
 (19) 

Where Δ (0)(k) represents the residual of the prediction results, and s1
2 is the variance of the original 

sequence. 

Year 2012 2013 2014 2015 2016 2017 2018 2019 

Predicted Fault 

Count 
100 124.087 165.830 223.476 279.024 479.977 593.480 727.108 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/25/20240929

106



Table 4. Accuracy Levels 

7.  Establishment of Combination Models Based on the IOWA Operator and Fault Prediction 

By comparing the correlation coefficient G and average relative error p, it is apparent that the Grey 

Markov model with the weakened buffer operator, as discussed previously, falls into the third level of 

accuracy and is not ideal for predictions. To further enhance the model’s predictive accuracy, this paper 

adopts the Induced Ordered Weighted Averaging (IOWA) operator’s combination forecasting method. 

This method assigns weights in order of the predictive accuracy of each individual forecasting method 

for sample points. The combination prediction is based on the criterion of minimizing the sum of squared 

errors [15, 16]. 

7.1.  Establishment of the Combination Model Based on the IOWA Operator 

The actual data sequence is denoted as x, and its value at time t is xt. We consider m possible individual 

forecasting methods for x, and let xit represent the predicted value for the i-th forecasting method at time 

t. Furthermore, ait represents the prediction accuracy of the i-th forecasting method at time t. We define: 

𝑎𝑖𝑡 = {
0, 𝑤ℎ𝑒𝑛 |

𝑥𝑡−𝑥𝑖𝑡

𝑥𝑡
| > 1

1 − |
𝑥𝑡−𝑥𝑖𝑡

𝑥𝑡
| , 𝑤ℎ𝑒𝑛 |

𝑥𝑡−𝑥𝑖𝑡

𝑥𝑡
| ≤ 1

(𝑖 = 1,2, … 𝑚, 𝑡 = 1,2, … . , 𝑁)
 
        (20)

 

W=(w1, w2, …, n) as an ordered weighted average vector for various forecasting methods in the 

combination prediction. We arrange the forecasting methods based on their prediction accuracy, and xa-

index(it) represents the predicted value corresponding to the i-th prediction accuracy for time t. Therefore, 

the predicted value based on the IOWA operator at time t is given by: 

1 1 2 2 ( )

1

( ( ), , ( ), ,....., ( ),
m

t t t m mt i a index it

i

x IOWA a t x a t x a t x w x −

=

=       =
︿

       

 (21) 

Here, ea-Index(it)=xt-xa-Index(it) and the total sum of squares can be calculated as: 

2 2

( ) ( ) ( )

1 1 1 1 1 1

( ) ( ) ( )
N N m m m N

t t t i a index it i j a index it a index jt

t t i i j t

S x x x w x w w e e− − −

= = = = = =

= − = − =     
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Let ( ) ( )

1

( 1,2,....., , 1,2,....., )
N

ij a index it a index jt

t

E e e i m j m− −

=

= = =  , ( )ij m mE E =   be the induced 

ordered weighted average combination prediction error information matrix. Therefore, the induced 

ordered weighted average combination prediction model can be expressed as follows: 

1( ) ( )

1 1 1

1
min ( ) ( ) , . .

0

m

m m N
iT

ii j a index it a index jt

i j t

i

w
S W w w e e WEW s t

w

=− −

= = =


=

= = 
 


  

    

  (23) 

This allows us to calculate the optimal weight coefficients and obtain the unique solution for the 

model. 

Accuracy Level Average Relative Error Variance Ratio Small Error Probability Correlation 

Level 1 p<0.01 0.35>C 0.95< G>0.9 

Level 2 0.01<=p<0.05 0.35<=C<0.50 0.85<<=0.95 0.8<G<=0.9 

Level 3 0.05<=p <0.1 0.50<=C<0.65 0.70<<=0.85 0.7<G<=0.8 

Level 4 p>=0.1 C<=0.65 <=0.70 0.6<G<=0.7 
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7.2.  Fault Prediction with the Combination Model Based on the IOWA Operator 

Following the establishment process of the combination model based on the IOWA operator as described 

above, we can substitute the weakened buffer operator Grey Markov model and the Grey Markov model 

into the error information matrix [17, 18]: 

1582.409226971804 2233.2462595233874

2233.2462595233874 16510.51865019062
E

 
=  
               

 (24)

 

As a result, the combination prediction model is given by: 

 1 2

1 2

12 2

1 2 1 2 , 0min 1582.409226971804 16510.51865019062 4466.492519046775 , . . w w

w wS w w w w s t + =

= + +
 

(25) 

We get 1 20.99, 0.01w w= = . This model provides the corresponding predicted value
( )t̂ a index itx x −− , 

as presented in Table 5, and the error values are presented in Table 6. Visualization of the results can be 

seen in Figure 4. 

Table 5. Predicted Values for Various Models 

Table 6. Error Values for Various Models 

Year 
Error Value for Grey Markov Model 

with Weakened Buffer Operator 

Error Value for Grey 

Markov Model 

Combined Model 

Error Value 

2012 0.000 0.000 0.000 

2013 0.052 0.351 0.055 

2014 0.041 -0.202 0.039 

2015 0.033 -0.036 0.032 

2016 0.198 0.016 0.018 

2017 -0.103 -0.043 0.044 

2018 0.019 -0.095 0.018 

2019 0.070 0.038 0.039 

The combined prediction model underwent post-analysis, yielding P=0.0306, which is in the second 

accuracy level, and G=0.821, also in the second accuracy level. Thus, the combined prediction model 

elevates the accuracy levels of P and G by one level. 

Year Actual Value 

Predicted Value for Grey 

Markov Model with Weakened 

Buffer Operator 

Predicted Value 

for Grey Markov 

Model 

Combined Model 

Predicted Value 

2012 100 100.000 100.000 100.000 

2013 131 124.087 85.018 123.696 

2014 173 165.830 207.956 166.251 

2015 231 223.476 239.321 223.634 

2016 348 279.024 342.345 341.712 

2017 435 479.977 453.934 454.194 

2018 605 593.480 662.544 594.170 

2019 782 727.108 751.943 751.695 
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Figure 4. Predicted Values and Actual Values for 

Various Models
 

Figure 5. Relative Residual Values for Various 

Models
 

From the prediction chart, it can be deduced that the Grey Markov model with the weakened buffer 

operator exhibits high accuracy in the early stages but has some fluctuations in the middle and later 

stages. In contrast, the Grey Markov model displays higher fluctuations in the early stages but better fits 

the data in the middle and later stages. However, the combined model leverages the strengths of both 

models, making better use of existing data resources. Through training, it can provide more accurate 

predictions for smart meter fault data. Therefore, this combined model is chosen to predict the fault 

counts for smart meters in 2020 to 2022, as shown in Table 7. 

Table 7. Predicted Smart Meter Fault Counts for 2020-2022 by Various Models 

Analysis of the average relative error p indicates that the combination prediction outperforms the 

individual models’ predictions. 

In summary, the process for predicting smart meter fault counts is illustrated in Figure 6. 

Year 

Predicted Value for Grey 

Markov Model with 

Weakened Buffer Operator 

Predicted Value for 

Grey Markov Model 

Combined Model 

Predicted Value 

2020 923.115 886.689 921.560 

2021 1040.897 1104.553 1043.923 

2022 1264.631 1250.650 1263.391 

Average Relative 

Error p 
0.02275 0.03293 0.02141 
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Figure 6. Flowchart of Smart Meter Fault Count Prediction Process 

8.  Conclusion 

In summary, for the fault prediction of smart meters with limited information, a comprehensive 

comparison of posterior error p, C, and correlation coefficient G indicates that the combination model 

has distinct advantages. Therefore, the combined Grey Weakened Buffer Markov model based on the 

IOWA operator, compared to the methods in the literature [19-20], significantly improves prediction 

accuracy, enabling more precise medium- to long-term fault predictions. Through an overall prediction 

of the number of faults, this method can reveal potential issues and fault trends for smart meters. For 

instance, the growth trend in fault data can be used to assess whether the batch of meters meets quality 

standards. Predictive data for the coming year can be used to estimate the power supply instability and 

economic losses resulting from meter faults and maintenance, thereby providing data support for 
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decisions on whether to replace this batch of meters or implement comprehensive meter maintenance. 

For example, by accurately predicting the number of faults, a company can make informed decisions on 

the allocation of maintenance personnel and fault handling resources, formulate relevant maintenance 

plans and strategies, proactively procure necessary spare parts and equipment, reduce prolonged power 

outages and energy losses due to faults, and subsequently improve the reliability and stability of the 

power grid. This approach plays a crucial role in guiding the maintenance of smart meters. 
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