
FT_HTlist: A fault-tolerant frequent itemset mining algorithm

based on the linear table

Xingyue Li1, Jun Lu1, 2

1School of Computer Science and Technology, Heilongjiang University, Heilongjiang, Harbin,

150080, China

2lujun116_lily@sina.com

Abstract. This paper proposes a fault-tolerant frequent itemset mining algorithm (FT_HTlist)

based on the linear table when the fault-tolerance is 1. The algorithm uses the method of

concatenating 1 in the highest bit of the binary number of the known fault-tolerant frequent

patterns to generate the candidate fault_tolerant patterns, called FT_Candidate. The algorithm is

based on the data structure of the linear table for fault-tolerant frequent itemset mining. This

method does not need recursion, so it reduces the consumption of mining space. At the same

time, the paper proposed a deduplication algorithm to remove the support for repeat calculations.

So the algorithm has a strong advantage in spatial performance. In addition, the algorithm only

needs to mine two horizontal chains of the FT_Candidate, thus reducing the consumption of

mining time. Finally, the paper shows the time performance and space performance of the

proposed algorithm under sparse datasets and dense datasets. The results show that our algorithm

has better mining time than other algorithms, and the horizontal chain reduces the memory

occupation of the algorithm.

Keywords: The linear table, Fault-tolerance, Mining algorithm.

1. Introduction

With the rise of big data and artificial intelligence, there is an urgent need for an algorithm that can filter

and sift a large amount of data into useful information and knowledge. In this case, data mining plays

an important role [1], and frequent itemsets mining is an important branch of data mining projects and

an important part of data mining [2]. In 2017, Fournier-Viger, Philippe, et al. made a corresponding

investigation on frequent itemset mining [3]. Therefore, frequent itemset mining has been used in many

applications, including cross-shopping [4], and traffic accident analysis [6].

However, traditional frequent itemset mining (FIM) only focuses on the case of exact matching

mining, that is, the case of absolute matching. When some data in the transaction database is missing,

which lead some interesting frequent itemsets will be ignored [7].

This paper mainly does the following work:

A linear list fault-tolerant frequent itemset mining algorithm based on bit combination is proposed.

Proposed deduplication algorithm and introduce the repeat structure to remove the support for

repeated calculations.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241168

© 2024 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

72

2. Relate work

In 2005, Jia-Ling Kon et al. proposed a FT_Pattern mining method based on bit vector representation

and described the VB-FT-Mine algorithm [8]. In 2008, Bashir, Halim, and Baig proposed an algorithm

for mining fault-tolerant frequent itemsets based on a pattern-growing approach [9]. In 2014, Shengxin

Liu and ChungKeung Poon proposed an effective approximate transformation of heuristic algorithms to

solve problems [5] and evaluated the effectiveness of the algorithm in experiments, they proposed an

acceleration technique to further improve the efficiency of the algorithm with acceptable errors [10]. In

2017, A Ashraf and T Nafis, et al. proposed an algorithm to find fault-tolerant frequent pattern mining

in massive datasets containing both deterministic and uncertain records [11]. Similarly, Zhiyang Li,

Fengjuan Chen, et al. proposed an algorithm for mining weighted probability frequent itemset in

uncertain databases [12]. Guanling Lee and Sheng-Lung Peng et al. proposed the concept of proportional

fault-tolerant frequent itemset [13].

3. Construct the bit combination data structure

Traditional FP-Tree mining algorithms need to obtain the support of candidate fault-tolerant patterns

through pointers linking parent and child nodes and previous pointers in the header table. At the same

time, according to the information of the header table and the previous pointer in the node, the algorithm

puts the nodes starting with the same highest bit item into a horizontal chain, and the result is shown in

Figure 1.

Item First index Last index Count pLink

a 2 2 1 〇

d 3 3 1 〇

c 4 7(4→7) 2 〇

b 1 8(1→5→8) 3 〇

e 6 10(6→9→10) 3 〇

b:1 01101

a:5 00001

d:3 00011

c:1 00101

e:1 10001

b:1 01111 b:1 01000

c:2 00111

e:1 11101 e:1 11111

Figure 1. The result of data migration.

After data migration, the algorithm will perform fault-tolerant frequent pattern mining. Compared

with the traditional algorithm, this method recursion of FP-Tree. In the following mining, the algorithm

obtains the support of the candidate FT_Pattern by bitwise and operation with the nodes in the current

horizontal chain according to the relevant conditions. This method reduces the execution time of the

algorithm.

4. Fault-tolerant frequent itemset mining

4.1. Strategies for generating candidate FT_Pattern

The process of mining FT_Patterns is to concatenate a bit on the binary number of existing FT_Pattern,

aim to obtain new FT_Candidate, and then obtain new FT_Pattern according to SUP and SUPI defined

by the user.

The algorithm generates new FT_Candidate by using the formula: ans_bit [k] [hight] | 2j. Ans_bit is

an integer array that holds the binary numbers of the generated FT_Pattern, k is the current FT_Pattern

to be processed, hight is the highest group of binary data, j is the binary bit in which the data item

concatenates 1 with the highest bit. Through the above method, the algorithm generates new FT_Patterns

based on the determined FT_Pattern, reducing the number of generating FT_Candidate.

4.2. Fault-tolerant frequent itemset mining strategy

In the following, this paper will take Figure1 as an example to illustrate the fault-tolerant frequent pattern

mining process. When scanning the horizontal chain of item d, the binary data of the node on the

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241168

73

horizontal chain is operated by AND with the binary data of FT_Candidate. That is, the binary number

00011 of the first node of the horizontal chain where item d is located is compared with the binary

number 00011 of FT_Candidate da, and the final result is 00011.

The algorithm increase the global support of the candidate itemset {d, a}, that is, sup(d, a) = 3, and

increases the support of the item that matches successfully, that is, item_sup(da, d) = 3, item_sup(da, a)

= 3.

Notice that since the binary number corresponding to entry a at this node is 1, the ancestor of this

node is the element in the horizontal chain in item a. Since the algorithm will continue to mine the nodes

in the horizontal chain of item d after mining the nodes in the horizontal chain of item a, the algorithm

takes the following approach to prevent repeated mining: If the FT_Candidate m = {x, w, z} is in the

horizontal chain of the highest item x and its ancestor is in the horizontal chain of the second highest

item w, the frequency matched with the binary number of this part of nodes will be saved in repeat.

The procedure for calculating the da support of a FT_Candidate is shown in Table 1.

Table 1. The algorithm calculates the da support of fault-tolerant frequent patterns

Sup(y) Item_sup(y, i) Repeat(y)

Sup(da) = 3 Item_sup(da, d) = 3 Repeat_sup(da) = 3

 Item_sup(da, a) = 3 Repeat_item(da) = 3

Item_sup(da, d) = 3 > SUPI = 2

Sup(da) = 8 Item_sup(da, a) = 8

Sup(da) = sup(da) – repeat_sup(da) = 8 – 3 = 5

Sup(da) = 5 ≥ SUP = 4

Item_sup(da, a) - repeat_sup(da) = 8 – 3 = 5≥ SUPI = 2

Item_sup(da, a) = 5 ≥ SUPI = 2

da is FT-pattern, add da to FT-pattern List

5. Results and Discussion

This section tests the time performance of the FT_HTlist algorithm in different types of datasets. Figure

2 and Figure 3 show the mining time and the number of frequent items in the sparse data set by setting

SUP = 1% unchanged and changing the size of SUPI/SUP from 0.5 to 1 with a step size of 0.1.

It can be found that the running time of the algorithm is inversely proportional to the magnitude of

the ratio. With the increase of SUPI, some items have lower support than SUPI, and the number of

frequent items and the number of FT_Candidate are reduced. Thus reducing the mining time.

The following is the study of the running state of the algorithm in the dense dataset. Figure 4 and

Figure 5 respectively show the running time in the dense dataset.

0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

120

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
s
e
c
e
n
d
)

SUPI/SUP

 retail
 onlineretail
 fruithut

Figure 2. Processing time with SUP=1% and SUPI/SUP = 0.5 to 1 in sparse database

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241168

74

0.5 0.6 0.7 0.8 0.9 1.0

60

80

100

120

140

160

180

200

220

F
r
e
q
u
e
n
t

i
t
e
m

SUPI/SUP

 retail
 onlineretail
 fruithut

Figure 3. Frequent item with SUP=1% and SUPI/SUP = 0.5 to 1 in sparse database.

95 96 97 98 99 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
s
e
c
o
n
d
)

SUPI/SUP (%)

 connect
 recordlink
 chess

Figure 4. Processing time with SUP= 99% and SUPI/SUP=0.95 to 1 in dense database.

95 96 97 98 99 100

2

4

6

8

10

12

14

16

18

F
r
e
q
u
e
n
t

i
t
e
m

SUPI/SUP (%)

 connect
 recordlink
 chess

Figure 5. Frequent item with SUP=99% and SUPI/SUP = 0.95 to 1 in dense database.

As can be seen from Figure 4 and Figure 5, the number of frequent items and mining time decrease

with the increase of support threshold gradually.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241168

75

6. Conclusion

In this paper, based on the precise frequent item set mining algorithm, the algorithm gets the

FT_Candidate by concatenating 1 in the binary with the generated FT_Pattern. It selects the

corresponding horizontal chain according to the highest bit and the second highest bit of the binary

number of the FT_Candidate and then carries out mining.

References

[1] W. Ertel, Machine Learning and Data Mining, Income Introduction to Artificial Intelligence, W.

Ertel, editor, Income Undergraduate Topics in Computer Science. , , London: Springer, 2011,

pp. 161-220. London: Springer, 2011, pp. 161-220. doi: 10.1007/978-0-85729-299-5_8.

[2] M. Cafaro and M. Pulimeno, Frequent Itemset Mining, Income Business and Consumer Analytics:

New Ideas, P. Moscato and N. J. de Vries, editors, Cham: Springer International Publishing,

2019, pp. 269-304. doi: 10.1007/978-3-030-06222-4_6.

[3] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang and H. B. Le, “A survey of itemset

mining”, WIREs Data Mining and Knowledge Discovery, vol. 7, issue 4, July 2017 , doi:

10.1002/widm.1207.

[4] F. M. Nafie Ali and A. A. Mohamed Hamed, “Usage Apriori and clustering algorithms in WEKA

tools to mining dataset of traffic accidents”, Journal of Information and Telecommunication,

Volume 2, Issue 3, Pages 231-245, July 2018, doi: 10.1080/24751839.2018.1448205.

[5] S. Liu and C. K. Poon, “On Mining Proportional Fault-Tolerant Frequent Itemsets”, in Database

Systems for Advanced Applications, vol. 8421, S. S. Bhowmick, C. E. Dyreson, C. S. Jensen,

M. L. Lee, A. Muliantara, and B. Thalheim, editors, Income Lecture Notes in Computer

Science, vol. 8421. , Cham: Springer International Publishing, 2014, pp. 342-356. doi:

10.1007/978-3-319-05810-8_23.

[6] B. C. Hidayanto, R. F. Muhammad, R. P. Kusumawardani and A. Syafaat, “Network Intrusion

Detection Systems Analysis using Frequent Item Set Mining Algorithm FP-Max and Apriori”,

Procedia Computer Science, vol. 124, pp. 751-758, January 2017, doi:

10.1016/j.procs.2017.12.214.

[7] X. Yu, H. Wang, X. Zheng and S. Liu, “A Model of Mining Noise-Tolerant Frequent Itemset in

Transactional Databases”, in Proceedings 2015 International Conference on Intelligent

Networking and Collaborative Systems, Taipei: IEEE, September 2015, pp. 21-24. doi:

10.1109/INCoS.2015.87.

[8] J.-L. Koh and P.-W. Yo, “An Efficient Approach for Mining Fault-Tolerant Frequent Patterns

Based on Bit Vector Representations”, in Database Systems for Advanced Applications, vol.

3453, L. Zhou, B. C. Ooi and X. Meng, editors, in Lecture Notes in Computer Science, vol.

3453, Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 568-575. doi:

10.1007/11408079_51.

[9] S. Bashir, Z. Halim and A. Rauf Baig, “Mining fault tolerant frequent patterns using pattern

growth approach”, In Proceedings 2008 IEEE/ACS International Conference on Computer

Systems and Applications, March 2008, pp. 172-179. doi: 10.1109/AICCSA.2008.4493532.

[10] S. Liu and C. K. Poon, “On mining approximate and exact fault-tolerant frequent itemsets”,

Knowl Inf Syst, vol. 55, no. 2, pp. 361-391, May 2018, doi:. 10.1007/s10115-017-1079-4.

[11] S. M. A. Ashraf and T. Nafis, “Fault Tolerant Frequent patterns mining in large datasets having

certain and uncertain records”, p. 14.

[12] Z. Li, F. Chen, J. Wu, Z. Liu and W. Liu, “Efficient weighted probabilistic frequent itemset mining

in uncertain databases”, Expert Systems, vol. 38, no. 5, pp. e12551, 2021, doi:

10.1111/exsy.12551.

[13] G. Lee, S.-L. Peng and Y.-T. Lin, “Proportional fault-tolerant data mining with applications to

bioinformatics”, Inf Syst Front, vol. 11, no. 4, pp. 461-469, September 2009, doi:

10.1007/s10796-009-9158-z. -469, September 2009, doi: 10.1007/s10796-009-9158-z.

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241168

76

