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Abstract. This paper proposes a fault-tolerant frequent itemset mining algorithm (FT_HTlist) 

based on the linear table when the fault-tolerance is 1. The algorithm uses the method of 

concatenating 1 in the highest bit of the binary number of the known fault-tolerant frequent 

patterns to generate the candidate fault_tolerant patterns, called FT_Candidate. The algorithm is 

based on the data structure of the linear table for fault-tolerant frequent itemset mining. This 

method does not need recursion, so it reduces the consumption of mining space. At the same 

time, the paper proposed a deduplication algorithm to remove the support for repeat calculations. 

So the algorithm has a strong advantage in spatial performance. In addition, the algorithm only 

needs to mine two horizontal chains of the FT_Candidate, thus reducing the consumption of 

mining time. Finally, the paper shows the time performance and space performance of the 

proposed algorithm under sparse datasets and dense datasets. The results show that our algorithm 

has better mining time than other algorithms, and the horizontal chain reduces the memory 

occupation of the algorithm.  
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1.  Introduction 

With the rise of big data and artificial intelligence, there is an urgent need for an algorithm that can filter 

and sift a large amount of data into useful information and knowledge. In this case, data mining plays 

an important role [1], and frequent itemsets mining is an important branch of data mining projects and 

an important part of data mining [2]. In 2017, Fournier-Viger, Philippe, et al. made a corresponding 

investigation on frequent itemset mining [3]. Therefore, frequent itemset mining has been used in many 

applications, including cross-shopping [4], and traffic accident analysis [6].  

However, traditional frequent itemset mining (FIM) only focuses on the case of exact matching 

mining, that is, the case of absolute matching. When some data in the transaction database is missing, 

which lead some interesting frequent itemsets will be ignored [7].  

This paper mainly does the following work:  

A linear list fault-tolerant frequent itemset mining algorithm based on bit combination is proposed.  

Proposed deduplication algorithm and introduce the repeat structure to remove the support for 

repeated calculations.  
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2.   Relate work 

In 2005, Jia-Ling Kon et al. proposed a FT_Pattern mining method based on bit vector representation 

and described the VB-FT-Mine algorithm [8]. In 2008, Bashir, Halim, and Baig proposed an algorithm 

for mining fault-tolerant frequent itemsets based on a pattern-growing approach [9]. In 2014, Shengxin 

Liu and ChungKeung Poon proposed an effective approximate transformation of heuristic algorithms to 

solve problems [5] and evaluated the effectiveness of the algorithm in experiments, they proposed an 

acceleration technique to further improve the efficiency of the algorithm with acceptable errors [10]. In 

2017, A Ashraf and T Nafis, et al. proposed an algorithm to find fault-tolerant frequent pattern mining 

in massive datasets containing both deterministic and uncertain records [11]. Similarly, Zhiyang Li, 

Fengjuan Chen, et al. proposed an algorithm for mining weighted probability frequent itemset in 

uncertain databases [12]. Guanling Lee and Sheng-Lung Peng et al. proposed the concept of proportional 

fault-tolerant frequent itemset [13].  

3.  Construct the bit combination data structure 

Traditional FP-Tree mining algorithms need to obtain the support of candidate fault-tolerant patterns 

through pointers linking parent and child nodes and previous pointers in the header table. At the same 

time, according to the information of the header table and the previous pointer in the node, the algorithm 

puts the nodes starting with the same highest bit item into a horizontal chain, and the result is shown in 

Figure 1. 

Item First index Last index Count pLink

a 2 2 1 〇

d 3 3 1 〇

c 4 7(4→7) 2 〇

b 1 8(1→5→8) 3 〇

e 6 10(6→9→10) 3 〇

b:1 01101

a:5 00001

d:3 00011

c:1 00101

e:1 10001

b:1 01111 b:1 01000

c:2 00111

e:1 11101 e:1 11111

 

Figure 1. The result of data migration. 

After data migration, the algorithm will perform fault-tolerant frequent pattern mining. Compared 

with the traditional algorithm, this method recursion of FP-Tree. In the following mining, the algorithm 

obtains the support of the candidate FT_Pattern by bitwise and operation with the nodes in the current 

horizontal chain according to the relevant conditions. This method reduces the execution time of the 

algorithm. 

4.   Fault-tolerant frequent itemset mining 

4.1.  Strategies for generating candidate FT_Pattern 

The process of mining FT_Patterns is to concatenate a bit on the binary number of existing FT_Pattern, 

aim to obtain new FT_Candidate, and then obtain new FT_Pattern according to SUP and SUPI defined 

by the user. 

The algorithm generates new FT_Candidate by using the formula: ans_bit [k] [hight] | 2j. Ans_bit is 

an integer array that holds the binary numbers of the generated FT_Pattern, k is the current FT_Pattern 

to be processed, hight is the highest group of binary data, j is the binary bit in which the data item 

concatenates 1 with the highest bit. Through the above method, the algorithm generates new FT_Patterns 

based on the determined FT_Pattern, reducing the number of generating FT_Candidate. 

4.2.  Fault-tolerant frequent itemset mining strategy 

In the following, this paper will take Figure1 as an example to illustrate the fault-tolerant frequent pattern 

mining process. When scanning the horizontal chain of item d, the binary data of the node on the 
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horizontal chain is operated by AND with the binary data of FT_Candidate. That is, the binary number 

00011 of the first node of the horizontal chain where item d is located is compared with the binary 

number 00011 of FT_Candidate da, and the final result is 00011.  

The algorithm increase the global support of the candidate itemset {d, a}, that is, sup(d, a) = 3, and 

increases the support of the item that matches successfully, that is, item_sup(da, d) = 3, item_sup(da, a) 

= 3.  

Notice that since the binary number corresponding to entry a at this node is 1, the ancestor of this 

node is the element in the horizontal chain in item a. Since the algorithm will continue to mine the nodes 

in the horizontal chain of item d after mining the nodes in the horizontal chain of item a, the algorithm 

takes the following approach to prevent repeated mining: If the FT_Candidate m = {x, w, z} is in the 

horizontal chain of the highest item x and its ancestor is in the horizontal chain of the second highest 

item w, the frequency matched with the binary number of this part of nodes will be saved in repeat.  

The procedure for calculating the da support of a FT_Candidate is shown in Table 1. 

Table 1. The algorithm calculates the da support of fault-tolerant frequent patterns 

Sup(y) Item_sup(y, i) Repeat(y) 

Sup(da) = 3 Item_sup(da, d) = 3 Repeat_sup(da) = 3 

 Item_sup(da, a) = 3 Repeat_item(da) = 3 

Item_sup(da, d) = 3 > SUPI = 2 

Sup(da) = 8 Item_sup(da, a) = 8  

Sup(da) = sup(da) – repeat_sup(da) = 8 – 3 = 5 

Sup(da) = 5 ≥ SUP = 4 

Item_sup(da, a) - repeat_sup(da) = 8 – 3 = 5≥ SUPI = 2 

Item_sup(da, a) = 5 ≥ SUPI = 2 

da is FT-pattern, add da to FT-pattern List 

5.  Results and Discussion 

This section tests the time performance of the FT_HTlist algorithm in different types of datasets. Figure 

2 and Figure 3 show the mining time and the number of frequent items in the sparse data set by setting 

SUP = 1% unchanged and changing the size of SUPI/SUP from 0.5 to 1 with a step size of 0.1.  

It can be found that the running time of the algorithm is inversely proportional to the magnitude of 

the ratio. With the increase of SUPI, some items have lower support than SUPI, and the number of 

frequent items and the number of FT_Candidate are reduced. Thus reducing the mining time.  

The following is the study of the running state of the algorithm in the dense dataset. Figure 4 and 

Figure 5 respectively show the running time in the dense dataset. 
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Figure 2. Processing time with SUP=1% and SUPI/SUP = 0.5 to 1 in sparse database 
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Figure 3. Frequent item with SUP=1% and SUPI/SUP = 0.5 to 1 in sparse database. 
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Figure 4. Processing time with SUP= 99% and SUPI/SUP=0.95 to 1 in dense database. 
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Figure 5. Frequent item with SUP=99% and SUPI/SUP = 0.95 to 1 in dense database. 

As can be seen from Figure 4 and Figure 5, the number of frequent items and mining time decrease 

with the increase of support threshold gradually.  
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6.  Conclusion 

In this paper, based on the precise frequent item set mining algorithm, the algorithm gets the 

FT_Candidate by concatenating 1 in the binary with the generated FT_Pattern. It selects the 

corresponding horizontal chain according to the highest bit and the second highest bit of the binary 

number of the FT_Candidate and then carries out mining.  
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