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Abstract: Prevalent is the practical application of Elliptic Curve Cryptography (ECC) in the 
modern public-key cryptosystem, especially the implementation of ECC algorithm in Bitcoin 
source code. With the thorough introduction of discrete logarithm and Diffie-Hellman key 
exchange, ECC has gradually progressed to be sophisticated and efficient simultaneously. 
Therefore, it currently has been widely regarded as the successor of RSA algorithm in terms of 
inheritance for its shorter lengths of keys, faster speed and higher safety under the same 
encryption strength. Due to the potential safety and complexity of Elliptic Curve Cryptosystem, 
it is apparently noticed that there is included a large volume of Maths principles related to the 
establishment of ECC algorithm. As a consequence, this paper will mainly focus on qualitative 
research and exemplary analysis to specifically elucidate the general knowledge on essential 
mathematical principles of ECC, including the Law of Addition, the Elliptic Curve Discrete 
Logarithm Problems (ECDLP) and the Elliptic Curve ElGamal (EC ElGamal), together with 
the corresponding applications combined with their deprivation processes.  

Keywords: mathematics, Elliptic Curve Cryptography, discrete logarithm, elgamal, law of 
addition. 

1.  Introduction 
In the digital era aiming to simplify the communications among users of electronic devices, the 
penetration rate of heterogeneous network has witnessed a dramatic increase in the past decades [1]. 
Correspondingly, due to the constructive demand of security and privacy maintenance amid the public 
internet users, in 1985 Neal Koblitz and Victor Miller independently developed a brand new public 
key cryptosystem named Elliptic Curve Cryptography (ECC), which is the most typical algorithm 
allowing the complexity of ECDLP to guarantee the high information security [1-3]. Since the 
complicated cryptosystem involves a wide range of functions including error detection, image decode, 
small grid establishment and so on [3-5], the sophisticated ECC algorithm is consisted of divergent 
principles worth further explorations and illustrations.  

As a result, the Elliptic Curve Cryptography is applied in both software and hardware, which has 
successfully overcome the shortcoming in current cryptographic methods revealed by Mathematical 
cryptanalysis [3], will be the topic on which this paper consistently focuses to generally analyze its 
fundamental principles beneficial for a better understanding about the foundation of ECC. Based on 
the relevance sequence, the main body of the article will be divided into four sections: (1) the elliptic 
curve cryptography, in which the origin and definition of ECC will be identified; (2) the law of 
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addition, which is different from the calculation law of Euclidean space; (3) ECDLP, a Mathematical 
problem widely regarded as the security root of ECC encryption [3]; and (4) EC ElGamal, a typical 
transplant of the elliptic curves practically used in modern cryptosystem.  

After a comprehensive illustration using qualitative research and exemplary analysis, the research 
will possibly assist the readers in better understanding Mathematical principles of the Elliptic Curve 
Cryptography, and stimulate the further development of ECC to obtain a more reliable cryptosystem 
by which the network communications through plaintext and ciphertext will become by far safer.  

2.  Elliptic curve cryptography 
ECC, an algorithm based on elliptic curve mathematics for establishing public-key cryptography, 
entered wide use from 2004 to 2005 after it had been initially proposed by Neal and Victor in 1985 [6]. 

2.1.  Elliptic curve origination  
Elliptic curve, which dominates no physical resemblance with an ellipse, is a descendant term 
originating from the close association with the cubic algebra elliptic equation describing the perimeter 
of an ellipse [7]. In detail, the perimeter formula of an ellipse can be written in the form below:  

                        L = 4a∫ �1 − e2 sin2 θ
π
2

0 dθ = 4aE �e, π
2
�                    (1) 

the polynomial E(e, π
2

) is named the Second Complete Elliptic Integral, guaranteeing the existence 
of an equation in the form of y2 + aty + by = t3 + ct2 + dt + e, which satisfies:  

f(x) = ∫ Rx
c �t,�t3 + ct2 + dt + e� dt                     (2) 

Therefore, the common elliptic curve used in cryptography is witnessed: y2 = x3 + Ax + B, which 
vividly elucidates the reasons for the name “Elliptic Curve” [8]. 

2.2.  Elliptic curve in cryptography 
As the article mentioned before, the Elliptic Curves Cryptography uses the curve equations in the form 
of y2 = x3 + Ax + B (A, B are the constant) most frequently, which is known as Weierstrass equation 
where the elliptic curve is required to be non-singular (i.e., no tip, no self-intersection, no isolated 
point) [2]. Thus, this condition is equivalent to [1]:  

4a3 + 27b2 ≠ 0. 
In addition, since the cryptographic operation on elliptic curves are done over finite field through 

coordinate points on elliptic curve, the equation can be transformed into [2, 4]: 
 y2 = �x3 + ax + b� mod{p}. 

So we can use point set Ep (a,b) to represent the elliptic curve:  
{(x, y)|0 ≤ x ≤ p, 0 ≤ y ≤ p, and x, y are both integers}⨆0 

This process empowers the geometric elliptic curves to be shifted into algebra set located in finite 
field, which makes it possible to be combined with number theory [1, 2, 9].  

3.  Law of addition 

3.1.  Four operations in fields 
Following are the four Operations in Fields. Addition and Multiplication: the same as the four 
operations for Euclidean space. Subtraction: require modulo operations for negative numbers: based 
on definition. Division: require modulo operations for fractions: based on inverse of fraction. 
Example:  

Find the value of a, in which (−1
2
)2 − 3 − 9 = 4−1 + (−12) = 6 + (−12) ≡ a mod 23 

Modulo of negative numbers: As (-6) = 23×(-1) + 17, getting (-6) ≡ 17 mod 23 according to 
definition; 

Modulo of fractions: As (4 × 6) mod 23 =1, getting 4-1 = 6, 6 is the inverse of 4 under modulo 23; 
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Hence it is easy to obtain: (−1
2
)2 − 3 − 9 = 4−1 + (−12) = 6 + (−12) ≡ 17 mod 23; 

Thus, the value of a is 17, easy to be calculated [1, 10]. 

3.2.  Point addition 

3.2.1.  Definition 1. If P, Q ∈ Ep (k, m), then 
M + O = M 
If M = (a, b), (a, b) + (a, -b) = O, that is, (a, -b) is the inverse of M under addition, denoted -M 
If M = (a1, b1), N = (a2, b2), M ≠ N, then M + N = (a3, b3) 

3.2.2.  Formula. As the paper has mentioned in 3.2.1., the two point M = (a1, b1) and N = (a2, b2), M 
+ N = (a3, b3) can be precisely calculated by the regular formula below: 

a3 = �μ2 − a1 − a2� mod p 
b3 = {μ(a1 − a3) − b1} mod p 

In which:  

μ =
b2 − b1

a2 − a1
 mod p 

3.3.  Point doubling 

3.3.1.  Algebra formula. Similar with 3.2.2., the two points, which have the same coordinates, M = (a1, 
b1) and N = (a1, b1), M + N = (a3, b3) is defined by the following calculation: 

a3 = �μ2 − 2a1� mod p 
b3 = {μ(a1 − a3) − b1} mod p 

In which: 

μ =
3a1

2 + k
2b1

 mod p 

Geometric Example [11]: Question: y2 = x3 + 3x + 5;  P = (−1,1), calculate 2P 

 

Figure 1. The geometric example. 

The common steps of the calculation is as follows:  
Find the tangent over point P by derivation : y’ = 3x2 + 3; 
Find another intersection of the tangent and elliptic curves; 
Find the point Q, which satisfies: Q and R are symmetric with respect to the x-axis; 
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Therefore, according to the law of addition, Q = 2P. 
These are the corresponding Process: 
Derivation: f′(−1) = 3 × (−1)2 + 3 = 6  
Get the tangent equation: PR: y = 6x + 12 
System of simultaneous equations :  

�
y = 6x + 12

   y2 = x3 + 3x + 5 

Calculate the result: x = x2p , y = −y2p 

3.4.  Point multiplication 
Point multiplication can be a function based on Point Addition: If M is a point on an elliptic curve, the 
multiplication over M is calculated by the repeated addition [2]:  

𝑛𝑛𝑛𝑛 = 𝑛𝑛 + 𝑛𝑛 + 𝑛𝑛 + ⋯  + 𝑛𝑛 times 

4.  Elliptic curve discrete logarithm problem  

4.1.  Discrete logarithm problem (DLP) 

4.1.1.  Discrete logarithm. If there exists a random integer p being relatively prime to q, while n is a 
primitive root of q, exactly a number 𝜇𝜇 among the sequence 0, 1, 2, ...,𝛷𝛷(𝑛𝑛) − 1, in which 𝛷𝛷(𝑛𝑛) is 
named as a totient function, can be recognized to satisfy that 𝑝𝑝 ≡ 𝑛𝑛𝜇𝜇(𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞). Thereby, the number 𝜇𝜇 
is then defined as the discrete logarithm of p with respect to the base n modulo q, denoted 𝜇𝜇 =
𝑖𝑖𝑛𝑛𝑚𝑚𝑛𝑛𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞) [12]. 

4.1.2.  Mathematical principles of discrete logarithm encryption. Given positive integers x, y, p > 1, to 
find the positive integer k > 1, satisfying: 𝑦𝑦 ≡ 𝑥𝑥𝑘𝑘(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝). 

x is the base; k is the private key; y is the public key: 
If we know the value of x , k (private key), it is easy to find y (public key), decrypted. 
If we know the value of x , y (public key), it is complex to find k (private key), hard to crack [1]. 

4.2.  Elliptic curve discrete logarithm problem (ECDLP) 

4.2.1.  Definition 2. & encryption principles. ECDLP, which is regarded as the essential mathematical 
principle of elliptic curve encryption, can be reflected in the form: P, Q are the points on the elliptic 
curve; k is an integer, satisfying : Q = kP, in which P is the base point, k is the private key, and Q is 
the public key. 

Given k and P, according to the addition laws, it is easy to find Q. 
Given P and Q, it is hard to find k (the p in ECC is too large to exhaustively cite k by hand). 

4.2.2.  Isomorphism attack (IA). Isomorphism Attack can be divided into Prime-field-anomalous 
Attack, WTP attack, Gaudry, Hess and Smart Weil Descent Attack, while all of them together 
synchronously aim to simplify ECDLP [1]. 

If there exist two elliptic curves which are simultaneously defined over K, such as: 
E1: y2 + a1xy + a3y = x3 + a2x3 + a4x + a6 
E2: y2 + a1�xy + a3�y = x3 + a2�x3 + a4�x + a6�  

E1 and E2 are called isomorphic over K [1]. 
The relation between isomorphism and elliptic curves is an equivalent relation defined over K, If 

there exist two isomorphic elliptic curves (E1 and E2) exist, subsequently their groups E1(K) and E2(K) 
of K-rational points must be also isomorphic [1, 3]. 
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Through Isomorphism Attack, ECDLP can be simplified to the corresponding DLP, while these 
attacks are unique in producing ECDLP solvers which are better than Pollard’s rho algorithm for certain 
elliptic curves [1, 3, 10]. 

5.  EC ElGamal 

5.1.  Diffie-hellman-merkle key exchange (DHM) 
With the help of the secure DHM protocol, two parties can generate a key via an unsecure channel 
without knowing anything about one another beforehand. In subsequent communications, this key may 
be used as a symmetric key to encrypt the communication's content [1].  

The process is as exemplified as below [2]: 
Alice and Bob decide a prime number p and choose a Q on the curve, making p and Q public: 

Ep: y2 = x3 + Ax + B(mod p) 
Alice and Bob randomly select an integer NA and NB respectively, and keep them not disclosed. 
Alice calculates QA=NA⋅Q (NA⋅Q refers to N times Q, same way as finding 2P), send it to Bob. 
Bob calculates QB=NB⋅Q, and sends it to Alice. 
Bob calculates NA⋅QB; Alice calculates NB⋅QA 
Therefore, Alice and Bob get the public key: 

NAQB = NA(NBQ) = (NANB)Q = (NBNA)Q = NB(NAQ) = NBQA 

5.2.  ElGamal 
ElGamal encryption algorithm is an asymmetric encryption algorithm based on the Difi-Hermann 
(DHM) key exchange. In 1985, Taher Elgamal proposed the ElGamal algorithm in his paper “A Public 
Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”[2]. 

The safety of ElGamal depends on discrete logarithm problem (DLP) on G, which is an Abelian 
group of prime order p and g is a generator of G, while ElGamal is consisted of 3 parts, including key 
generation, encryption and decryption [1]. 

5.3.  EC ElGamal 
Elliptic Curve ElGamal is one form of ECC, in which the ElGamal is transplanted to an elliptic curve 
[1]. Specifically, the concept of EC ElGamal was initially proposed by Neal Koblitz in his paper 
“Elliptic Curve Cryptosystems” in 1997 [2]. 

The safety of EC ElGamal depends on the elliptic curve discrete logarithm (ECDLP) on G, while it 
can be similarly divided into key generation, encryption and decryption as well [4]. 

5.3.1.  Key generation process. Select a elliptic curve to obtain Ep(a, b), embed the plaintext 
information m into the point Pm on the curve, and then perform an encryption transformation on the 
point Pm. Take a generator G of Ep(a, b), Ep(a, b) and G as the public parameters, and User A selects: 
nA as the private key; PA = nAG as the public key [2]. 

5.3.2.  Encryption process. User B firstly sends a message Pm to User A, selects a random positive 
integer, and generates the following points as ciphertext [4]:  

𝐶𝐶𝑚𝑚 = {𝑘𝑘𝑘𝑘,𝑃𝑃𝑚𝑚 + 𝑘𝑘𝑃𝑃𝐴𝐴} 

5.3.3.  Decryption process. Subtract the multiplication of the first point with the private key from the 
second point in the ciphertext point pair, then it is easy to obtain: 

Pm + kPA − nAkG = Pm + k(nAG) − nAkG = Pm 
As the definition emphasized, here multiplied does not equal to simple multiplication in algebra; 

instead, it should be restricted by the point multiplication mentioned in 3.4., based on point addition. 
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6.  Conclusion 
In this paper, basic principles of Elliptic Curve Cryptography have been concisely covered, combining 
number theory, group theory and elliptic curve together to introduce a frequently-witnessed 
cryptosystem in modern information world. According to ECC’s complexity and efficiency which 
have outperformed those of RSA, elliptic curve cryptosystem will make the network communication 
much safer and more private. Consequently, the Mathematical principles, including point addition, 
ECDLP, EC ElGamal, to name but a few, are basically elucidated in the article from the perspectives 
of concept, definition, application and so on. This paper is likely to be helpful especially for novices 
majoring in Cryptography due to the applied qualitative research and exemplary analysis. Additionally, 
through the horizontal comparison with RSA, it can be clearly noted that the advantages of ECC are 
predominant, which deserve a more comprehensive research in the next paper.  
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