
The application of convex function and GA-convex function 

Dingrun Zhao 

School of Mathematics and Statistics, Central South University, Changsha, Hunan, 

410083, China 

 

7805220128@csu.edu.cn 

Abstract. A convex function is a function that maps from a convex subset of a vector space to 

the set of real numbers. Convex functions have some important properties, such as non-negativity, 

monotonicity, and convexity, which can help us derive and prove inequalities. This paper 

explores the concepts of convex functions and GA-convex functions, demonstrating their utility 

in proving a variety of common and complex inequalities. Beginning with an overview of convex 

functions and their extension to GA-convex functions, the study shows how these mathematical 

tools can be effectively utilized in the context of inequality proofs. By leveraging the properties 

of these functions, the paper successfully establishes rigorous proofs for a range of inequalities, 

highlighting the versatility and applicability of convex and GA-convex functions in 

mathematical analysis. The properties convex and GA-convex functions allow us to use it to 

determine the direction of inequalities, prove inequalities, determine the optimal solution of 

inequalities, and even prove Cauchy inequalities. 

Keywords: Convex function, GA-convex function, Application. 

1.  Introduction 

The concavity and convexity of functions have many applications in proving inequalities. Cha conducted 

research on formulas related to the theorems of convex functions, deriving several important 

inequalities, which were further applied to prove inequalities and solved conditional extremum problems 

in 2004 [1]. In 2005, Xia derived the Jensen’s inequality from the concavity, convexity, and continuity 

of functions [2]. Wu provided the definition of square-convex functions and methods for determining 

square-convex functions. Then the Jensen-type inequality for square-convex functions was established 

in 2005 [3]. In 2010, Song and Wan obtained a more concise Hadamard-type inequality for GA-convex 

functions through their study of GA-convex functions [4]. Shi et al. obtained a new refinement of the 

Hermite-Hadamard-type inequality for GA-convex functions in 2013 [5]. In the same year, Shi et al. 

derived some new weighted Hadamard-type inequalities for differentiable GA-convex functions [6]. Wu 

and Mao proved the Hermite-Hadamard inequality on a special region in 2022 [7]. 

This article mainly introduces convex functions and GA-convex functions. The paper first introduces 

the definition of convex functions and its equivalent definitions, extends it to n numbers, and then proves 

several common inequalities using its properties in section 2. This paper transitions from convex 

functions to GA-convex functions, introduces its definition, proves its properties, creates an inequality, 

and then proves a more complex inequality relationship in section 3. 
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2.  Convex Function and its application 

2.1.  Properties of concave-convex function 

The definition of concave-convex function will be introduced first, followed by an explanation of its 

properties.  

Definition 2.1. ([8]) The original definition of convex functions is derived from geometric intuition. 

Assuming curve 𝐶: 𝑦 = 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏], take 𝑥1, 𝑥, 𝑥2 ∈ [𝑎, 𝑏] such that 𝑥1 < 𝑥 < 𝑥2. The equation of 

the chord passing through the points 𝐴(𝑥1, 𝑓(𝑥1) and 𝐵(𝑥2, 𝑓(𝑥2) is  

𝐹(𝑥) = 𝑓(𝑥1) +
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1

(𝑥 − 𝑥1) =
𝑥2 − 𝑥

𝑥2 − 𝑥1

𝑓(𝑥1) +
𝑥 − 𝑥1

𝑥2 − 𝑥1

𝑓(𝑥2) (1) 

So 𝑓(𝑥) is concave upwards or downwards in interval [𝑎, 𝑏], 

𝑓(𝑥) ≥ (𝑜𝑟 ≤)
𝑥2 − 𝑥

𝑥2 − 𝑥1

𝑓(𝑥1) +
𝑥 − 𝑥1

𝑥2 − 𝑥1

𝑓(𝑥2) (2) 

Property 2.2. Suppose 𝑓(𝑥) is concave upwards or downwards in interval [𝑎, 𝑏], then it holds that  

𝑓(𝛼𝑥1 + 𝛽𝑥2) ≥ (𝑜𝑟 ≤)𝛼𝑓(𝑥1) + 𝛽𝑓(𝑥2). 

Proof: Let 

𝜃 =
𝑥2 − 𝑥

𝑥2 − 𝑥1

⇔ 𝑥 = 𝑥1 + (𝑥2 − 𝑥1)𝜃 ⇔ 𝑥 =
𝑥2 − 𝑥

𝑥2 − 𝑥1

𝑥1 +
𝑥 − 𝑥1

𝑥2 − 𝑥1

𝑥2    (0 < 𝜃 < 1) (3) 

If the 𝑥1 and 𝑥2 in equations (1) and (3) are interchanged, the result remains unchanged. This means 

that the above results are independent of whether  𝑥1 is greater than or less than 𝑥2 , as long as 𝑥 ∈
(𝑥1, 𝑥2). Therefore, set 

𝛼 =
𝑥2 − 𝑥

𝑥2 − 𝑥1
> 0, 𝛽 =

𝑥 − 𝑥1

𝑥2 − 𝑥1
> 0, 𝛼 + 𝛽 = 1, 𝑥 = 𝛼𝑥1 + 𝛽𝑥2  (4) 

So 𝑓(𝑥) is concave upwards or downwards in interval [𝑎, 𝑏] that can be replaced by another form: 

𝑓(𝛼𝑥1 + 𝛽𝑥2) ≥ (𝑜𝑟 ≤)𝛼𝑓(𝑥1)𝛽𝑓(𝑥2) (5) 

Definition 2.3. Let 𝑓(𝑥) be defined on interval [𝑎, 𝑏], 𝑥1, 𝑥2 ∈ [𝑎, 𝑏], 𝛼 > 0, 𝛽 > 0, 𝛼 + 𝛽 = 1, if 

𝑓(𝛼𝑥1 + 𝛽𝑥2) ≥ (𝑜𝑟 ≤)𝛼𝑓(𝑥1) + 𝛽𝑓(𝑥2) (6) 

Then it indicates that 𝑓(𝑥) is concave up or concave down on the interval [𝑎, 𝑏]. 

2.2.  The Application of Convex Functions in Proving Inequalities 

In this subsection, common inequalities are proven using the properties of convex functions. First, a 

lemma is introduced. 

Lemma 2.4. Each Let 𝑓(𝑥) be convex upwards and downwards on [𝑎, 𝑏], ∀𝑥1, 𝑥2, … , 𝑥𝑛 ∈ [𝑎, 𝑏], 
there exists, 

𝑓 (
𝐱𝟏 + 𝐱𝟐 + ⋯ + 𝐱𝐧

𝐧
) ≤ (𝐨𝐫 ≥)

𝐟(𝐱𝟏) + 𝐟(𝐱𝟐) + ⋯ + 𝐟(𝐱𝐧) 

𝐧
   (7) 

Proof: By induction, when 𝑛 = 1,2, the proposition can be proven using (6). Assuming it holds for 

𝑛 = 𝑘 , prove that it also holds for 𝑛 = 𝑘 + 1 , ∀𝑥1, 𝑥2, … , 𝑥𝑛 ∈ [𝑎, 𝑏], 

𝑓(
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘+1

𝑘 + 1
) = 𝑓(

𝑘

𝑘 + 1
∗

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘

𝑘
+

𝑥𝑘+1

𝑘 + 1
) 

Let 𝛼 =
𝑘

𝑘+1
, 𝛽 =

1

𝑘+1
⇒ 𝛼 + 𝛽 = 1,

𝑥1+𝑥2+⋯+𝑥𝑘

𝑘
∈ [𝑎, 𝑏], then 
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                𝑓 (
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘+1

𝑘 + 1
) = 𝑓 (𝛼 ∗

𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘

𝑘
+ 𝛽𝑥𝑘+1)

≤ (𝑜𝑟 ≥)
𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛)

𝑛
  (8)

 

Example 2.5. Let 𝑎1, 𝑎2, … , 𝑎𝑛 > 0. Prove: 

 
𝑛

1
𝑎1

+
1

𝑎2
+ ⋯ +

1
𝑎𝑛

≤ √𝑎1𝑎2 … 𝑎3
𝑛 ≤

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛

𝑛
 (9)

 

Proof: First prove the right half of the equation. 

√𝑎1𝑎2 … 𝑎3
𝑛 ≤

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛

𝑛
⇔ 𝑎1𝑎2 … 𝑎𝑛 ≤ [

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛

𝑛
]𝑛 

⇔
ln 𝑎1 + ln 𝑎2 + ⋯ + ln 𝑎𝑛

𝑛
≤ ln

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛

𝑛
 (10) 

The inequality can be proven using convex function 𝑓(𝑥) = 𝑙𝑛𝑥  and the Lemma 2.4. Replacing 

𝑎𝑘  with 
1

𝑎𝑘
(𝑘 = 1,2, … , 𝑛) can prove the left half of the inequality. 

3.  GA-Convex Functions 

3.1.  Characteristics of GA-Convex Functions 

The definition of GA-Convex Functions will be introduced first, followed by an explanation of its 

properties. 

Definition 3.1.([9]) The Let 𝑓(𝑥) be a function defined on 𝐼 ∈ (0, +∞). For any 𝑥1, 𝑥2 ∈ 𝐼 and 𝑡 ⊆
(0,1), it exists, 

 𝑓(𝑥1
𝑡𝑥2

1−𝑡) ≤ 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) (11) 

Then 𝑓(𝑥) is called a GA-subconvex function on  𝐼,if the inequality sign is reversed; otherwise, it is 

termed a GA-superconvex function on that interval. 

Theorem 3.2. If a function 𝑓(𝑥)  is GA-convex on the interval (𝑎, 𝑏) ∈ (0, +∞) , then for any 

𝑥1, 𝑥2 ∈ (𝑎, 𝑏)  and for 𝑡 ∈ (0,1) , the function 𝑓(𝑒𝑥)  is GA-subconvex function on the interval 

(𝑙𝑛𝑎, 𝑙𝑛𝑏). 

Proof: Let any 𝑥1, 𝑥2 ∈ (𝑎, 𝑏), and 𝑡 ∈ (0,1), then  

𝑓(𝑥1
𝑡𝑥2

1−𝑡) = 𝑓 (𝑒𝑙𝑛𝑥1
𝑡𝑥2

1−𝑡
) = 𝑓(𝑒𝑡𝑙𝑛𝑥1+(1−𝑡)𝑙𝑛𝑥2) 

≤ 𝑡𝑓(𝑒𝑙𝑛𝑥1) + (1 − 𝑡)𝑓(𝑒𝑙𝑛𝑥2) = 𝑡𝑓(𝑥1) + (1 − 𝑡)𝑓(𝑥2) (12) 

Where 𝑓(𝑥)  is GA-convex on (𝑎, 𝑏) . For any 𝑥1, 𝑥2 ∈ (𝑙𝑛𝑎, 𝑙𝑛𝑏) , since 𝑓(𝑥)  is GA-subconvex 

function on (𝑎, 𝑏), for any 𝑡 ∈ (0,1), it holds 

𝑓(𝑒𝑡𝑥1+(1−𝑡)𝑥2) = 𝑓((𝑒𝑥1)𝑡(𝑒𝑥2)1−𝑡) ≤ 𝑡𝑓(𝑒𝑥1) − (1 − 𝑡)𝑓(𝑒𝑥2) (13) 

Therefore, 𝑓(𝑒𝑥) is GA-subconvex function on interval (𝑙𝑛𝑎, 𝑙𝑛𝑏). 

Theorem 3.3. Let a function 𝑓(𝑥) be twice differentiable on the interval 𝐼 ∈ (0, +∞). Then 𝑓(𝑥) is 

GA-convex on the interval 𝐼 if and only if the following conditions hold: 

(1) Let 𝑓(𝑥)  be GA-convex on 𝐼, the inequality 𝑥𝑓″(𝑥) + 𝑓 ′(𝑥) ≥ 0, ∀𝑥 ∈ 𝐼 must hold all 𝑥 in 𝐼. 

(2) Let  𝑓(𝑥) be GA-concave on 𝐼, the inequality 𝑥𝑓″(𝑥) + 𝑓 ′(𝑥) ≤ 0, ∀𝑥 ∈ 𝐼 must hold all 𝑥 in 𝐼. 

Proof: It is easy to establish the connection between the second derivative of 𝑓(𝑒𝑥) on the interval 

(𝑙𝑛𝑎, 𝑙𝑛𝑏) and the concavity/convexity of the function. 
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Theorem 3.4. Suppose 𝑓(𝑥)  is GA-concave on the interval 𝐼  , 𝑥𝑖 ∈ 𝐼, 𝜆𝑖 ∈ 𝑅(𝑖 = 1,2, … , 𝑛), 𝜆1 +

𝜆2 + ⋯ + 𝜆𝑛 = 1 It holds 𝑓 (𝑥1
𝜆1𝑥2

𝜆2 … 𝑥𝑘
𝜆𝑘) ≤ 𝜆1𝑓(𝑥1) + 𝜆2𝑓(𝑥2) + ⋯ + 𝜆𝑘𝑓(𝑥𝑘)(∑ 𝜆𝑖

𝑘
𝑖=1 = 1, 𝜆𝑖 >

0). 

Proof:  This theorem can be proved by induction. Then, it is easy to get if 𝑓(𝑥) is GA-Concave on 

interval 𝐼: 

 𝑓( √𝑥1𝑥2 … 𝑥𝑛
𝑛 ) ≤

1

𝑛
∑ 𝑓(𝑥𝑖)

𝑖=1

𝑛

 (14) 

3.2.  Applications of GA-convex functions. 

Theorem 3.5. ([10]) Suppose function 𝑓: [𝑎, 𝑏] → (0, +∞) is GA-Concave, it holds  

(
1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎) ≤

1

𝑏 − 𝑎
∫ 𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 ≤ (
1

𝑙𝑛𝑏 − 𝑙𝑛𝑎
−

𝑎

𝑏 − 𝑎
)𝑓(𝑎) + (

𝑏

𝑏 − 𝑎
−

1

𝑙𝑛𝑏 − 𝑙𝑛𝑎
)𝑓(𝑏) (15) 

If function 𝑓 is GA-Convex, inverting the inequality sign is sufficient. 

Proof: First prove the inequality on the right-hand side. It can be proved easily by taking the logarithm 

on both sides. Let 𝑥 = 𝑎
𝑙𝑛𝑏−𝑙𝑛𝑥

𝑙𝑛𝑏−𝑙𝑛𝑎𝑏
𝑙𝑛𝑥−𝑙𝑛𝑎

𝑙𝑛𝑏−𝑙𝑛𝑎 and  
𝑙𝑛𝑏−𝑙𝑛𝑥

𝑙𝑛𝑏−𝑙𝑛𝑎
+

𝑙𝑛𝑥−𝑙𝑛𝑎

𝑙𝑛𝑏−𝑙𝑛𝑎
= 1. 

Let 𝑡 =
𝑙𝑛𝑥−𝑙𝑛𝑎

𝑙𝑛𝑏−𝑙𝑛𝑎
, it is easy to infer 𝑡 ∈ (0,1). By the properties of GA-Concave, the following formula 

can be derived. 

∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = ∫ 𝑓(𝑎1−𝑡)𝑓(𝑏𝑡)
1

0

𝑑(𝑎1−𝑡𝑏𝑡) ≤ ∫ [(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏)]
1

0

𝑑(𝑎1−𝑡𝑏𝑡) .   

= 𝑎 ∫ [(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏)]
1

0

𝑑(
𝑎

𝑏
)𝑡

= 𝑎[(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏)](
𝑏

𝑎
)𝑡 ∣0

1− 𝑎 ∫ (
𝑏

𝑎
)𝑡

1

0

𝑑[(1 − 𝑡)𝑓(𝑎) + 𝑡𝑓(𝑏)]

= 𝑏𝑓(𝑏) − 𝑎𝑓(𝑎) + 𝑎(𝑓(𝑎) − 𝑓(𝑏)) ∫ (
𝑏

𝑎
)𝑡

1

0

𝑑𝑡

= (
𝑏 − 𝑎

𝑙𝑛𝑏 − 𝑙𝑛𝑎
− 𝑎)𝑓(𝑎) + (𝑏 −

𝑏 − 𝑎

𝑙𝑛𝑏 − 𝑙𝑛𝑎
) 𝑓(𝑏)                                                           (16) 

Dividing both sides by 𝑏 − 𝑎  will get the inequality on the right-hand side. By the same way, the 

inequality on the left-hand side can be proved. Let △= 𝑏 − 𝑎, 𝑎 +
𝑖

𝑛
△∈ [𝑎, 𝑏], 𝑖 = 1,2, … , 𝑛. By the 

definition of a definite integral and Theorem 3.4, the following formula can be derived. 

1

𝑏 − 𝑎
∫ 𝑓(𝑥)

𝑏

𝑎

𝑑𝑥 = 𝑙𝑖𝑚
𝑥→+∞

1

𝑛
∑ 𝑓(𝑎 +

𝑖

𝑛
Δ)

𝑛

𝑖=1

≥ 𝑙𝑖𝑚
𝑥→+∞

√∏(𝑓(𝑎 +
𝑖

𝑛
Δ))

𝑛

𝑖=1

𝑛

 

= 𝑓( 𝑙𝑖𝑚
𝑥→+∞

𝑒𝑥𝑝[𝑙𝑛 √∏(𝑎 +
𝑖

𝑛
Δ)

𝑖=1

𝑛

𝑛

]) = 𝑓( 𝑙𝑖𝑚
𝑥→+∞

𝑒𝑥𝑝[

∑ 𝑙𝑛(𝑎 +
𝑖
𝑛 Δ)

𝑛

𝑖=1

𝑛
]) 

= 𝑓(𝑒𝑥𝑝{
1

Δ
𝑙𝑖𝑚

𝑥→+∞

Δ ∑ ln (𝑎 +
𝑖
𝑛 Δ)

𝑛

𝑖=1

𝑛
} = 𝑓(𝑒𝑥𝑝{

1

𝑏 − 𝑎
∫ 𝑙𝑛𝑥

𝑏

𝑎

𝑑𝑥}) = 𝑓(
1

𝑒
(

𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎)   (17)

 

When 𝑓(𝑥) = 𝑙𝑛𝑥𝑏−𝑎 , the inequality in (15) holds. 

Example 3.6. ([10]) Suppose 𝑏 > 𝑎 > 0 , 
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√𝑎𝑏 ≤
𝑏 − 𝑎

𝑙𝑛𝑏 − 𝑙𝑛𝑎
≤

(√𝑎 + √𝑏)2

4
≤

1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎 ≤

4

9
(
𝑎 + 𝑏 + √𝑎𝑏

√𝑎 + √𝑏
)2 ≤

𝑎 + 𝑏

2
 (18) 

Proof: This example can be proven by GA-concave functions and Theorem 3.5 By substituting 

𝑓(𝑥) = 𝑥,
1

𝑥
, √𝑥,

1

√𝑥
  into the inequality on the left side of (15), it follows 

1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎 ≤

𝑎 + 𝑏

2
,

𝑏 − 𝑎

𝑙𝑛𝑏 − 𝑙𝑛𝑎
≤

1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎 

1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎 ≤

4

9
(
𝑎 + 𝑏 + √𝑎𝑏

√𝑎 + √𝑏
)2,

(√𝑎 + √𝑏)2

4
≤

1

𝑒
(
𝑏𝑏

𝑎𝑎
)

1
𝑏−𝑎   (19) 

Substituting 𝑓(𝑥) =
1

𝑥
 into the inequality on the right side of (15) results in   

 √𝑎𝑏 ≤
𝑏 − 𝑎

𝑙𝑛𝑏 − 𝑙𝑛𝑎
 (20) 

Next, the proof of Example 3.6 reduces to prove: 

𝑏 − 𝑎

𝑙𝑛𝑏 − 𝑙𝑛𝑎
≤

𝑎 + 𝑏

2
  (21) 

Suppose 𝑥 =
𝑏

𝑎
> 1, the original formula can be simplified as (𝑥 + 1)𝑙𝑛𝑥 > 2(𝑥 − 1). 

Construct a function 𝑓(𝑥) = (𝑥 + 1)𝑙𝑛𝑥 and utilize the Lagrange Mean Value Theorem  
𝑓(𝑥)−𝑓(1)

𝑥−1
=

𝑓′(𝜉)(1 < 𝜉 < 𝑥) ⇔ (𝑥 + 1)𝑙𝑛𝑥 = (
1

𝜉
+ 𝑙𝑛𝜉 + 1)(𝑥 − 1). 

Due to this common inequality:  

𝑙𝑛𝑥 > 1 −
1

𝑥
> (

1

𝜉
+ 1 −

1

𝜉
+ 1) (𝑥 − 1) = 2(𝑥 + 1)  (22) 

Therefore, the inequality (21) is proved. 

Replacing 𝑎 and b with √𝑎 and √𝑏 in (21) results in 
2(√𝑏−√𝑎)

𝑙𝑛𝑏−𝑙𝑛𝑎
≤

√𝑎+√𝑏

2
, multiplying both sides by 

√𝑎 + √𝑏, 
𝑏−𝑎

𝑙𝑛𝑏−𝑙𝑛𝑎
≤

(√𝑎+√𝑏)2

4
 can be obtained.  

Only the last inequality needs to be proven now. 

 
4

9
(
𝑎 + 𝑏 + √𝑎𝑏

√𝑎 + √𝑏
)2 ≤

𝑎 + 𝑏

2
  

⇔
(𝑎 + 𝑏)(√𝑎 + √𝑏)2

2
−

4

9
(𝑎 + 𝑏 + √𝑎𝑏)2 ≥ 0 

⇔
1

18
[(𝑎 + 𝑏 + 4√𝑎𝑏)(√𝑎 − √𝑏)2] > 0 (23) 

Therefore, the inequality Example 3.6 is proved. 

4.  Conclusion 

This article first introduces the definition of convex functions from a geometrically intuitive perspective, 

then extends from two points on an interval to n points, skillfully demonstrating that the harmonic mean 

is less than or equal to the geometric mean, which is less than or equal to the arithmetic mean. In the 

subsequent section, it extends the ordinary convex functions to GA-convex functions, studies their 

sufficient and necessary conditions and properties, and ultimately constructs an inequality to prove the 

complex inequality chain in the example. It is evident that convex functions can easily be used to prove 
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seemingly complex inequalities, but they also require assistance from other tools in mathematical 

analysis. It is hoped that in the future, building upon the foundation laid by this research, researchers 

can continue to advance the understanding and application of convex functions in the realm of 

inequalities. 
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