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Abstract. The relation between local and global solution of an equation can be discussed with 

the method of class field theory and algebraic number theory. In this piece of writing, the 

author will introduce the behavior of both local and global m-th power in some specific 

number field. Of course, the result in this paper can be extended into the function field, but it 

will not be involved in this paper. This paper will prove that if k(ω2t)/k is cyclic then the 

Local m-th powers everywhere is equivalent to the global m-th power. In the Non-cyclic case 

this decomposition becomes P(m, S) = km ∪ δkm. This paper will also prove some useful 

propositions in topological group theory, which will be used in the proof of Grunwald-Wang 

theorem. Grunwald-Wang theorem states that we can find a cyclic extension with given local 

behaviors. To describe the extension, this paper combines character theory with a topological 

group, one can depict the cyclic extension. This theorem can be used in the further exploration 

of central simple algebra. 
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1.  Introduction 

There are lots of local and global phenomena in number theory. Artin-Hasse theorem shows that any 

Quadratic form has solutions in the global field if and only if it has solutions in every local field. 

However, things will become a little bit difficult if we want to solve the higher dimension situation. A 

widely known counterexample is that 3x3 + 4y3 = 5z3, this equation can be proved to have a local 

solution everywhere, however, it doesn’t have the nontrivial solution in Q. Therefore, the local and 

global principle will lose its efficiency when it comes to the higher cases. 

In this paper, the author will primarily use the method in cyclotomic field theory and class field 

theory to show that the local and global principle can still be true in some special cases, which is, in 

some specific number field, local m-th power everywhere is equivalent to the global m-th power. And 

the author will show that even in those particular number fields that don’t fit the condition, it can still be 

described explicitly. 

The proof offers us means by which we can use to do some further exploration in the local and global 

principle in number field. One can even use this to prove the Grunwald-Wang theorem, which states that 

we can find a cyclic extension with specific local behavior. 
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2.  The interconnection of local m-th powers and global m-th powers  

To begin with, first assume that k is a number field, in particular, it is a global field. In this section, the 

proof where k is a function field will be omitted which can be proved by the same token[1]. 

Denoting S to be a finite set of prime ideals, and let P(m, S) be the group of elements that are 

m-power in kp, where p ∈ S. Then it is easy to see that km ∈ P(m, S) since every elements in km is a 

global m-th power, which is a local m-th power everywhere. Thus, it comes a natural question that in 

what condition: 

P(m, S) = k
m

(1) 

If the equality doesn’t hold, than how to describe the group P(m, S). 

Now the author will prove the following theorem which shows the interconnection between Local 

and Global m-th powers of a number field. 

Theorem 1: Let k be a number field, m = 2tn, where n is an odd number. P(m, S) defined as above, 
if k(ω2t)/k if cyclic then one have P(m, S) = km. 

Otherwise, at least km/2 ∈ P(m, S). (Here in the second situation one can divide m with 2 since if 

t ≤ 2 then the cyclic condition holds) 

Proof: First notice that if (m, n)=1, and let x be both m-th power and n-power, then x is a mn-th power. 

Therefore, WLOG, assume m = pr. 

If ωm ∈ k, then K = k( √xm
) is well defined, and for β that not in S, one have Kβ = kβ. Which 

means β  splits completely in K. However, from class field theory[2]. the Dirichlet Density of 

completely splitting ideals equals to the degree of the extension, but S is a finite set, which means the 

Dirichlet Density of such β is 1[3]. Thus K=k, or x is a m-th power in k, or P(m, S) = km. 

Else, ωm not in k. From the above discussion, let L = k(ωm) be the new ground field, and x =
ym, y ∈ L. Consider the decomposition of 

Xm − x = ∏ fi(x) , (2) 

fi(x) is irreducible polynomials in k. Then the root of each fi(x) is y ∗ ωm
j

. While in the same time, 

we know that x is a local m-th power, thus for those p not in S, p splits completely in some splitting field 

of fi(x)[4]. 

Next, assume L/k is cyclic of prime power degree, then there exists a smallest extension k(y ∗ ωm
j

), 

since for p not in S, it must split completely in some subextension, so it must split completely in k(y ∗

ωm
j

). Again, using the conclusion in class field theory, we have k(y ∗ ωm
j

)=k. Therefore, x is a m-th 

power in k. 

For those odd primes p, let I = k(ωp), then L/I is cyclic and of prime power degree, thus x =

vm,v ∈ I. Take norm on the both sides, xd ∈ km , d is a factor of p-1, thus (d,m)=1, Thus x ∈ km. 

For p=2, since in this situation, the degree of K/k is a prime order, thus if k(ω2t)/k is cyclic then we 

have already solved the problem. Therefore, we assume it is non-cyclic, and consequently t > 2. Then 

let U = k(i), we know that K/U is cyclic, which means x = γm, γ ∈ U. Take norm on the both sides, we 

attain that x2 = μm,μ ∈ k. Then x = ±μm/2. However, if the negative sign hold, then −1 = x/μm/2 , 

since x is a local m-th power almost everywhere, thus -1 is a local square almost everywhere, thus k(i)=k, 

contradiction! Thus x = μm/2 ,or km/2 ∈ P(m, S). 

The above theorem have solved the most situation of P(m, S), but one still can’t write P(m, S) 

explicitly when k(ω2t)/k is non-cyclic. Therefore, we want to explore it further. 

For the sake of simplification, denote μr = ω2t , and ρr = μr+1/μr. Then it is easy to find that  

k(i)k(ρ
r
) = k(𝜇𝑟). (3) 

And those who know some cyclotomic field will know that k(ρr)/k is a cyclic extension, which is 

not hard to verify. 
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Assume s is the maximal integer s.t. ρs ∈ k but ρs+1 ∉ k. Then k(ρs+1)/k is then cyclic and if i ∈
k(ρs+1) then k(ρr) = k(μr) for all r. And conversely if k(μr)/k cyclic then since it has the only 

quadratic subfield, k(ρs+1)=k(i). 

Therefore, in the non-cyclic case, k(ρr)k(i)=k(μr) is an extension of degree 4 and has 3 degree 2 

subextension which is k(ρr), k(iρr), k(i). Which means 2 + ρs, i, −2 − ρs are non-squares in k. 

Consider ρs ∈  k, then k(i) = k(μs) which is cyclic, so if we want achieve non-cyclic, we must 

have t > s. And let σ be the automorphism of k(i)/k , then we must have σ(μs) = 1/μs. 

Assume x ∈ P(m, S), and x ∉  km. let k(i) to be the ground field then x = ym,y ∈ k(i). 

Then (y/σ(y))m=1, thus y/σ(y) is a m-th root of unity, however, since μs+1 ∉  k(i), it is a 2s − tℎ 

root of unity. Write y = μs
τ, then τ is an odd integer, else let z = y ∗ μs

2s−1−τ/2, then z ∈ k, and 

z2t
=x, contradiction! 

WLOG, assume y/σ(y) = μs
n,here m = 2tn.  

Then y/σ(y) = μs
n = ((1 + μs)/(1 + 1/μs))n = ((1 + μs)/σ(1 + μs))n 

Letγ = y/(1 + μs)n, then γ = σ(γ), thus γ ∈ k. 

Here we obtain x=δ ∗ γ2t
, where  

δ = (1 + μ
s
)

m
= (2 + ρ

s
)

m
2 = (−2 − ρ

s
)

m
2 (4) 

So far it have been proved that P(m, S) ∈ km ∪ δkm. But it still need to be verified that if this 

expression is significative. Which means we have to show that δ ∉ km and δ ∈ P(m, S). 

First we notice that δ = (2 + ρs)m/2,and i ∉ k , thus δ ∉ km holds. Secondly, for δ ∈ kp
m, we 

must have k(i)k(μs)/k collapse, which means it can be a 4-degree extension. Conversely, if it does 

collapse, then δ indeed become s local m-th power. 

According to the above discussion, we have attained the following theorem. 

Theorem 2:k a number field. Then P(m, S) = km, except k(μ2t)/k is non-cyclic and S contains all 

the prime ideals that k(i)k(μs)/k is a 4-degree extension, in this situation, P(m, S) = km ∪ δkm. As a 

corollary to theorem2, one can make an explicit description of Jm and Cm, which is the the subgroup of 

idele group and idele class group consist of those elements with m periods. 

Corollary1: Jm and Cm, then Jm̃  =  Cm,(Jm̃   means the image of Jm in C. Unless in the case that 

there is no prime ideal such that the local extension k(i)k(μs)/k is a 4-degree extension. Then in this 

case, ∃a, s.t. 

Jm̃  ∪ aJm̃  =  Cm. (5) 

Proof: It is a natural corollary according to the above discussion. 

3.  Topological groups 

Consider an open finite order subgroup N of P = ∏ kp
∗

p∈S , then if one can find an open finite order 

subgroup M of the ideal class group such that M ∩ P = N, then one can describe the local behavior on S 

of class field belonging to M. To find this M, we have to prove some lemmas. 

And we use P̅ to represents the same group but with product topology. 

Now consider some lemmas of topological groups. 

Lemma 1: C is a topological group, A is a compact subset, B is a closed subset, Then AB is closed. 

Proof: First transform this lemma, to prove AB is closed, we only need to prove AB is open, we have 

to prove if x ∉ AB, then ∃V, an open neighborhood of x, s.t.V ∉ AB. Which means if A−1x ∩ B =
0, tℎen ∃V, A−1x ∩ B = 0. Note that A−1x is a compact subset, WLOG, we can assume A compact, 

A ∩ B = 0, we want to prove the existence of V s.t.AV ∩ B = 0. For x ∈ A, since B is an closed subset, 

then ∃Wx, s. t. xWx ∩ B = 0, and for WxWy ∈ Wx, since A is compact, there exist finite x, s.t. V ∈

⋂ Wx , and xWx ∩ B = 0, then ∀a ∈ A, assume a ∈ xWx, aV ∈ xWxV∈xWxWx ∈ xWx ∩ B = 0, thus 

AV ∩ B = 0. 
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Lemma 2:P ∩ Cm = Pm, unless there is prime ideal such that the local extension k(i)k(μs)/k is a 

4-degree extension, in this special case,  

P ∩ Cm = Pm ∪ cPm, (6) 

where c has component δ in those prime that doesn’t collapse and 1 in other where. 

Proof: let x ∈ P ∩ Cm, then let y be an idele element that represents it, we can write y = αnm, α ∈
P(m, S), by theorem2, we have the lemma2 holds.  

Lemma 3:Consider P as a topological group, then Pm is close in P, and P/Pm , P̅/Pm̅̅ ̅̅  compact. 

Proof: First Cm is an open and finite order subgroup, thus it is closed, and therefore unless in the 

special case, else P ∩ Cm = Pm is also closed. Assume we are in the special case, then P ∩ C2m ∈ Pm, 

since P ∩ C2m is closed, thus Pm is closed too. 

For the map is continuous, thus we only need to show the compactness of P̅/Pm̅̅ ̅̅ . We show kp
∗ /kp

m∗ 

is compact. For the archimedean, this is finite of order 1 or 2 depending on m. For those 

non-archimedean, we have kp
∗ /kp

m∗=Z/mZ × Up
∗ /Up

m∗, and as we all know, the unit group is compact, 

therefore, it is compact too. It is not difficult to prove that the open subgroup of finite order of P and P̅ 

corresponds to each other. 

Lemma 4: Consider N is an open subgroup of finite index in P, then NCn is closed in C. 

Proof: Consider W̅ be an open and compact neighborhood of 1 contained in N̅. And let n|m and 

P̅m ∈ N̅, then since we have N̅/P̅m is compact. Therefore we can find a finite covering such that N̅=∪
piW̅P̅m, therefore we have the following finite covering, N=∪ piWPm →NCn=∪ piWPmCn=∪ piWCn. 

Since W is compact and Cn is closed, thus NCn is closed.  

Lemma 5: C/Cn is compact. 

Proof: Since we know that C≅ R+ × C0, we have C/Cn ≅ C0/C0
n, and C0 is compact, therefore it is 

compact.  

Lemma 6: one can find a neighborhood systems V s.t. CnV is open subgroup of finite index in C. 

Proof: Consider N to be a compact neighborhood of 1 in J. And let M to be its image in C, then since 

C/Cm is compact, we have CnV is of finite order.Lemma 7: Consider N an open subgroup of finite order 

of P. Then ∃M an open subgroup of finite order of C, s.t. P ∩M=N(P∩ Cn), here n is a given number, 

and M contains Cn. 

Proof: As we all know, NCn and PCn is closed in C. And by assumption NCn is of finite order in 

PCn, thus NCn is open in PCn, which means K∩PCn ∈ x, where K is an open subgroup of C. Let 

M=KNCn , then M is an open subgroup of finite order in C, and P ∩ M=P ∩ PCn ∩ KNCn =P ∩
NCn=N(P∩ Cn). 

Theorem 3:Consider N be an open subgroup of finite order of P, then ∃M, open and finite order, s.t 

M∩ P = N. And the smallest integer that can be the exponent of C/M is equal to the smallest integer n s.t. 

P∩ Cn ∈N, then  

P/N≅ PM/M, and for the exponent m of P/N, then if P∩ Cm ∈N, then n=m else n=2m. 

Proof: Firstly, if P∩ Cn ∈N, then by lemma7 we have already find the M. Now conversely we assume 

that M∩ P = N and n to be the exponent of C/M, then Cn ∈ M, and P∩ Cn ∈M∩ P ∈N.  

4.  Grunwald-Wang theorem 

Now consider the case that P/N is a cyclic group, those who familiar with characters will know that in 

this case we can attach P/N with a character χ, and write χp to be the local character act on kp
∗ , and 

write np to be its periods. Therefore, according to the above discussion we have proven the following 

theorem. 

Theorem 4:S be a finite set of prime ideals, and χp be local characters with periods np, m be their 

least common multiple. Then ∃χ a global character on C, and its has local behavior χp on kp
∗ . And if 

∏ χp(δ)p∈S =1 then it has period m, else it has period 2m.  
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Grunwald-Wang Theorem: k a global field, and S be a finite set of prime ideals, and np be a set of 

integers, m be their least common multiple. Then there exist a cyclic extension K/k with degree m and 

Kβ/kp has degree np for all p∈ S.  

Proof: For Archimedean p, the choice is unique. For non-Archimedean p that collapse, choose the 

unramified extension with degree np. Describe all these local extensions by characters, and apply the 

precious theorem we have prove the Grunwald-wang theorem. 

This theorem has a lot of application in class field theory, and it holds in the functional field. What is 

more, the result can also be used in the theory of abelian variety[5]. 

5.  Conclusion 

In this paper, the author has proved the interconnection between Local and Global m-th powers and 

some proposition of topological groups, and combine this two theories by applying the character theory 

to prove Grunwald-Wang theorem. However, this paper is simply the proof without any example or 

counterexample. These examples can be found in Milne’s book Class field theory. What’s more, the 

author only mentions the number field, but show few thing about function field, this part of theory can 

be find in Tate’s book Class field theory. 

The Grunwald-Wang theorem can be extended into a more general one, and the condition can ve 

interpreted into character theory. 

For further study, those who familiar to central division algebra can use Grunwald-Wang theorem to 

prove every division algebra over a number field K, it contains a maximal sub-cyclic extension of K. 

And this result can be used in the theory of abelian varieties. 
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