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Abstract. The AutoRegressive Moving Average model with eXogenous inputs (ARMAX) is a 

well-established linear input-output model formulation for time series analysis. This project 

implements the Schur-Cohn transform algorithm in C++ to detect and analyze the stability of 

polynomial coefficients of the AutoRegressive (AR) and Moving Average (MA) components 

within an ARMAX model. Based on this algorithm, an optimization approach is proposed to 

improve ARMAX model performance under user-specified parameter constraints. The 

implementations aim to provide an effective computational framework for investigating 

ARMAX model stability and enhancing model accuracy in time series forecasting. The efficacy 

of the proposed methodology is validated empirically through model implementation and 

forecasting performance evaluation on a designated experimental dataset. 

Keywords: ARMAX Model, Schur-Cohn Algorithm, Time Series Forecasting, Stability 

Constraints Optimization 

1.  Introduction 

The Autoregressive Moving Average model with eXogenous inputs (ARMAX) has its theoretical 

foundation in the seminal AutoRegressive Moving Average (ARMA) model, which was originally 

introduced in the highly influential book “Time Series Analysis: Forecasting and Control” by Box and 

Jenkins in 1970 [1]. As a pivotal tool for investigating temporal data, the ARMA model comprises two 

key components: the AutoRegressive (AR) part and the Moving Average (MA) part.  

The AutoRegressive (AR) component delineates the dynamic interdependence between a time series’ 

current realization and its own lagged values. The AR process of order p postulates that the present 

observation can be expressed as a linear aggregation of the p immediately preceding periods’ terms [2]. 

This encapsulates the inherent inertia or short-term memory within the temporal sequence. By fitting a 

polynomial function to historical data, the AR mechanism models the endogenous propagation pattern 

to forecast forthcoming values. 

In a complementary fashion, the Moving Average (MA) component represents the influence of 

stochastic shocks and random disturbances on the current observation. The MA parameters of order q 

quantify the lingering impacts of white noise error terms originating in the previous q periods [3]. 

Thereby, the MA process characterizes the finite memory length for exogenous perturbations imposed 

on the series and to smooth transient fluctuations. 

Specifically, the AR portion delineates the interrelationship between the current observation and its 

own historical values, while the MA portion delineates the accumulation of errors in the AR forecasts.  
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Built upon the ARMA model, the ARMAX model incorporates exogenous variables, allowing it to 

account for the influence of external factors. The inclusion of exogenous inputs enhances the versatility 

and predictive accuracy of the model for many real-world applications [4]. Since its inception, the 

ARMAX framework has become widely utilized in myriad disciplines including finance [5], 

econometrics [6], and engineering [7] for its effectiveness in multivariate time series modeling and 

forecasting.  

In the practical implementation of ARMAX, the stability of polynomial coefficients corresponding 

to model parameters warrants detailed analysis. As demonstrated theoretically and empirically by the 

study [8], the overall stability of ARMAX systems hinges entirely on the stability of the AutoRegressive 

(AR) and Moving Average (MA) components, which is contingent on the distribution of their 

polynomial roots. Therefore, this work necessitates verifying the stability of parameter polynomial 

coefficients and incorporating stability criteria as constraints during ARMAX model optimization. By 

ensuring stable AR and MA polynomials through coefficient constraints, the implemented ARMAX 

structure can exhibit robust forecasting performance. 

Stability verification for ARMAX model involves analyzing the parametric polynomial coefficients 

that characterize the model’s dynamics. Two primary methods exist - the Hurwitz criterion using matrix 

algebra, and the Schur-Cohn criterion based on polynomial transformations. This work implements the 

Schur-Cohn test to check ARMAX stability, with preliminary experiments also done to explore the Jury 

test criterion. 

The Schur-Cohn criterion relies on applying the Schur transform to the polynomial expressed as a 

linear combination of itself and its reciprocal. This special transformation converts the original complex 

polynomial into a reduced single-variable polynomial of degree one, with an associated complex 

parameter γ. The magnitude of γ relative to the unit circle threshold indicates whether the roots of the 

original polynomial lie inside or outside the unit disk [9]. By recursively applying the Schur transform 

to γ, a complete set of stability parameter {γ
k
} can be derived. According to the criterion, the necessary 

and sufficient condition for stability is that all γ
k

≥ 0. In effect, the Schur transforms map the polynomial 

to the complex plane, allowing root locations to be inferred from the γ
k
  parameters. Compared to 

directly solving the characteristic equation, this elegant approach enables efficient and robust stability 

characterization for ARMAX models of any order. The mappings avoid expensive root computations, 

while providing generalization beyond the limitations of Hurwitz or Jury criteria. 

Comparatively, the Jury criterion studies the sign patterns of polynomial derivatives on the boundary, 

thereby inferring root locations indirectly.  

After obtaining the stability parameter γ, this project uses the Automatic Differentiation method to 

process the parameter sequence, and ultimately achieves the control of model stability by limiting the 

threshold value of the stability parameter γ. The article [10] describes the basic ideas and applications 

of automatic differentiation. It states that automatic differentiation methods are used not just to compute 

derivatives of functions, but to derive rules for summing, differencing, product, and quotient 

differentiation of functions. Once these rules have been established, the process of differentiation is 

analogous to the process of finding the value of a function.In general statement, this automatic 

differentiation method is an implicit computational law which is based on arithmetic operations on 

ordered pairs to compute function values and their derivatives. This method is easy to program on a 

computer. The auto-differential method can obtain function values and derivative values directly from 

function definitions without explicitly deriving derivative formulas and avoids approximation errors in 

numerical differentiation.  

In addition, the article lists extensions to automatic differentiation, including higher-order derivatives, 

multiple independent variables, etc., which can be combined with other forms of operations, such as 

interval operations, to provide information about functions and their derivatives over a range of variables. 

The purpose of using the automatic differentiation function in this project is that after obtaining the 

γ parameters and their automatic differentiation, they can be added as constraints to an existing ARMAX 

model. The NLopt library needs to be applied at this stage. 
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NLopt (Nonlinear Optimisation) is an open source library designed to solve a wide range of nonlinear 

optimisation problems. As can be seen from the official documentation page, the NLopt library provides 

optimisation algorithms and interfaces for a wide range of optimisation and constraint limitation 

problems. Specifically, the NLopt library supports a wide range of mainstream programming languages 

including C, C++, Python, etc., providing developers with a wide choice of optimisation algorithms. 

This project uses a C++ interface to the NLopt library called NLopt C-plus-plus Reference, which 

provides developers with a way to call optimisation algorithms from the NLopt library from within a 

C++ program to help solve complex problems involving non-linear optimisation. 

Finally, the test sets and datasets used in this project were generated by dynamic modelling, a 

methodology described in the paper [11], which proposes a new approach that uses implicit models to 

represent the parameters of the objective function to be optimised in predictive control. This means that 

it is no longer necessary to explicitly model the dynamics of the system but to directly parametrically 

model the control objective. This approach avoids the use of predictive models by optimising directly 

in parameter space. As the control process proceeds, the optimisation algorithm can adjust the 

parameters in real-time to accommodate changing system characteristics and control requirements. By 

using an implicit model, complex predictive models can be avoided, thus reducing the amount of model-

building effort. Secondly, this approach reduces computational complexity because the optimisation 

process is performed directly in the parameter space, avoiding the computation of predictive models. 

Most importantly, this approach can provide better performance and faster convergence in some cases. 

In summary, the overall objectives and process structure of the project are as follows: 

•Definition of ARMAX Model: Begin by formulating the ARMAX model, explicitly defining the 

polynomial parameters for both the autoregressive lag term (AR) and the moving average lag term (MA). 

This initial ARMAX model serves as the foundation for subsequent steps. 

•Application of Schur Transform for Parameter Sequence: Implement the Schur Transform 

technique to process the AR and MA polynomial parameters. This process yields a sequence of 

parameters, wherein each value is indicative of the model’s stability characteristics. 

•Automatic Differentiation of Parameter Sequences: Employ automatic differentiation to compute 

the gradients of the obtained parameter sequence. These gradients hold pivotal significance as they are 

used to establish constraints in forthcoming optimization procedures. 

•Incorporation of Constraints: Harnessing the capabilities of the NLopt library’s algorithms, 

introduce the γ-values and their corresponding gradients as constraints into the original ARMAX model. 

This step ensures that the resultant optimized model exhibits enhanced stability. 

•Model Execution: Execute the modified ARMAX model using both the test dataset and the 

complete dataset. This step involves the optimization process aimed at elevating the model’s stability. 

•Attainment of Optimization Results: Conclude the project by obtaining the optimized model 

parameters. Undertake a comparison of the Mean Square Error (MSE) metrics prior to and post-

optimization, thereby gauging the efficacy of the optimization process. 

This project was carried out in parallel with two other projects that used genetic algorithms to find 

parameter values for the ARMAX model (the work of X. Zhang) and the use of ACF to impose 

constraints on the ARMAX model (the work of G. Liu). The ultimate goal is to run the stability 

constraints in conjunction with the other two components to obtain the best model optimisation results 

2.  Methodology 

2.1.  Description of the ARMAX model structure 

The core structure and process of this project is shown by Figure 1, which is summarised as the 

parameter selection process of the ARMAX model using the Schur transform and the automatic 

derivation technique, introducing the stability requirement into the constraints and using the 

optimisation algorithm to obtain the ARMAX model that takes into account both accuracy and stability. 
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Figure 1. Core Project Structure and Process.  

An ARMAX model can usually be represented as (1): 

𝑌𝑡 = 𝜀𝑡 + ∑

𝑖=1
𝑝

𝜑𝑖𝑌𝑡−𝑖 + ∑

𝑖=1
𝑞

𝜃𝑖𝜀𝑡−𝑖 + ∑

𝑖=1
𝑟

𝜂𝑖𝑋𝑡−𝑖 (1)
 

where: 

•Yt - The value of the explanatory variable at moment t 

•εt - Stochastic disturbance term 

•φ
i
 - Autoregressive coefficient,i denotes the lag order 

•Yt−i - The value of the explanatory variable in the past i period 

•θi - Moving average coefficient, i denotes lagged order 

•εt−i - Random disturbance term for the past i periods 

•η
i
 - Parameters of exogenous variables, i denotes lagged  order 

•Xt−i - Exogenous variable values in the past i period 

p,q,r are the number of AR, MA and exogenous inputs, respectively. The AR term (∑ φ
i

p

i=1 Yt−i) 

describes the effect of past values on current values.The MA term (∑ θi
q

i=1 εt−i) describes the effect of 

past perturbations and the exogenous variable term (∑ η
i

r
i=1 Xt−i) describes the effect of external factors. 

This project is concerned with the stability of the AR and MA terms. 

Taking the AR term as an example, expanding the AR part of (1) yields the following representation 

(2): 

𝑦(𝑧): = 𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋯ + 𝑎𝑛𝑧−𝑛 (2) 

Where:  

•𝑦(𝑧) - Current time entry 

•ai - Parameters for the past i moments 
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•z−i - Past ith time scale 

•n ≥ 0 is mandatory 

The AR part can be simply viewed as an n-dimensional discrete time series polynomial, to which the 

Schur transform and the Jury test are applied to discuss its stability respectively. 

Discrete system stability is equivalent to the fact that all poles fall within the unit circle [12]. This 

condition is tantamount to the fact that the poles of the system are within the unit circle of the complex 

conjugate plane (Z-plane), which according to the Laplace transform, maps to the region of the negative 

semiaxis of the complex frequency plane (S-plane), as illustrated by Figure 2: 

 

Figure 2. Mapping relations from the interior of the unit circle in the Z-plane to the negative semi-axis 

of the S-plane.  

The Schur transform is first used to determine whether the roots of the polynomial are inside the unit 

circle. For an n-dimensional polynomial p of the form (3), we define its reciprocal polynomial p∗ via 

(4): 

p(z): = anzn + an−1zn−1 + ⋯ + a0 (3) 

p∗(z): = a0̅zn + a1̅zn−1 + ⋯ + an̅ (4) 

If p is a polynomial of degree n ≥ 1 given by (3), the polynomial Tp of degree n-1 defined by (5) is 

called the Schur transform of p. 

Tp(z): = a0p(z) − anp∗(z) 

= ∑(𝑎0𝑎𝑘 − 𝑎𝑛𝑎𝑛−𝑘)𝑧𝑘 

𝑛−1

𝑘=0

(5) 

The Schur transform of a polynomial with a degree of 0 results in the zero polynomial. It’s important 

to highlight that the Schur transform of a polynomial p is influenced by the degree assigned to p itself, 

rather than solely being determined by the function p. 

Then we need to define the iterated Schur transform T2p, T3p, ... , Tnp by (6), where Tk−1pshould be 

treated as a polynomial of order n-k+1 even if the leading coefficient is zero. 

 Tkp: = T(Tk−1p),      k = 2,3, ⋯ , n. (6) 

At the same time, we can note that Tp(0), of the form (7), will always be a real number. 

 Tp(0) = a0a0 − anan = |a0|2 − |an|2 (7) 

Here we set scale parameters (8): 

 γ
k
: = Tkp(0) (8) 

We can obtain a theorem that all poles of the n-dimensional polynomial p are outside the unit circle 

if and only if  (9) holds. 
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 γ
k

> 0,      k = 1,2, ⋯ , n. (9) 

The calculation of  γ
k
  is called the Schur-Cohn algorithm [9]. The algorithm is characterised by 

converting the polynomials into Schur parameter form and recursively performing Schur 

transformations. Each transformation produces a complex parameter γ. If all the resulting real parts of  

γ are non-negative, all the roots of the initial polynomial are outside the unit circle. On the contrary, if 

there exists one γ parameter whose real part is negative, then at least one root of the polynomial is inside 

the unit circle.  

The most important feature of the algorithm is that it is computed using the coefficients of each term 

of the polynomial and the complex characteristic equations can be avoided. The method is low arithmetic 

and applicable to any high-order polynomials. 

Recalling (2) and (3), we want (2) to be stable, we need to transform it into the form of (3), which 

corresponds to poles outside the unit circle, i.e., γ
k

> 0. At this point, the poles of (2) are inside the unit 

circle, which yields the stability conclusion. 

Since the polynomial coefficients of the AR and MA parts of our current application are real numbers, 

the Schur transform can be simplified to (10): 

𝑇𝑝(𝑧): = 𝑎0𝑝(𝑧) − 𝑎𝑛𝑝∗(𝑧) 

 = ∑

𝑘=0
𝑛−1

(⋅ 𝑎0𝑎𝑘 − 𝑎𝑛𝑎𝑛−𝑘)𝑧𝑘 (10) 

We create a new project, using the C++ programming language, complete the programming of the 

Schur transform and test it with two sets of sequences of known stability, as shown in appendix for 

details.  

Since the input to the Schur transform is practically related to the polynomial coefficients only, we 

create a vector P, store the coefficients of each term of the original polynomial in order, and then process 

vector P with the reverse function to obtain the inverted sequence invP. We then create the function 

entitled SchurTransform, which has two inputs, the first being the vector P constant and the second being 

the reference vector variable P_red. Calculate the data according to (10), and return the result to the 

reference vector variable P_red using the push_back function, at which time P_red[0] is the γ value under 

the dimension, and the obtained P_red is the new sequence after the dimension is reduced by 1. Then 

create a for loop in the main function with the number of polynomial coefficients, and use 

SchurTransform function inside the loop. Assign the obtained P_red to P to implement the computation 

of Tkp and obtain γ
k
. 

Take the example of a set of time series (11): 

 p(z) = z3 − 1.3z2 − 0.08z + 0.24 (11) 

The sequence is known to be stable and the process of performing the Schur transformation on it is 

shown in the Table 1 below: 

Table 1. Example of applying schur transformrties to a polynomial 

ROW a0 a1 a2 a3 

P0 1 -1.3 -0.08 0.24 

invP0 0.24 -0.08 -1.3 1 

P1 0.9424 -1.2808 0.232  

invP1 0.232 -1.2808 0.9424  

P2 0.8343 -0.9092   

invP2 -0.9092 0.8343   

P3 -0.1318    

invP3 -0.1318    

P4     
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P is the input vector and invP is the inverse vector of  P. The subscripts of both indicate the number 

of times they have gone through the Schur transform, and the number with the shaded background 

represents the γ-value; notice that only one element in P3. The resulting P4 is null, but at this point it is 

possible to compute a γ-value, i.e., it is the P3 element itself. 

2.2.  Comparison of Jury test and Schur-Cohn algorithm 

In this session, we also tried the Jury test criterion. Jury test is based on the discriminant theorem, which 

assesses the stability of a system by constructing a specific discriminant. The core idea of the method is 

to take the coefficients of the characteristic equations of the system as inputs and determine whether the 

system is stable or not by calculating the value of the discriminant.  

After comparison, we found that the Jury test has limitations compared to the Schur transform:  

Firstly, the Jury test can only determine whether a discrete sequence is stable or not in terms of its 

conclusions, and cannot provide the results of the calculations for each step. This makes it difficult to 

understand the details and influences of the discrete system stability problem [13]. For example, in a 

complex discrete system, if the Jury test concludes that the system is unstable, we cannot intuitively 

understand which coefficients or factors contributed to this result. This opacity limits our understanding 

of the system stability problem. 

In contrast, the Schur transform provides more visualisation and tractability in determining the 

stability of discrete systems. By transforming the coefficients of a discrete system into γ values, we can 

visualise the impact of each dimension. This helps us to better understand the stability characteristics of 

the system and how to achieve stability by adjusting the parameters. 

The Jury test can become complex and cumbersome when dealing with higher-order discrete systems. 

As the order of the system increases, the tables and calculations of the Jury test will increase dramatically, 

resulting in computation and judgement becoming difficult. Schur transform is relatively more suitable 

for higher order systems because it has better scalability by handling the coefficients through the 

multiplication and inverse of matrices. It can handle the stability judgement of higher-order systems 

more efficiently and also provide an intuitive presentation of the results. A comparison of the time 

complexity of the two is shown in the Figure 3 below: 

 

Figure 3. Comparing the time complexity of Jury test and Schur transform algorithms.  

It can be appreciated that the time complexity of the Jury test increases linearly, while the time 

complexity of the Schur transform is logarithmic. For polynomials with coefficients more than 4 terms, 

it is more appropriate to use Schur transform, which explains the fact that Jury test is more suitable for 

manual handwritten forms. 
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2.3.  Application steps of Schur-Cohn algorithm 

After successfully implementing the Schur transform function, we apply it to the ARMAX model. We 

branch the original ARMAX model code and rename it to “CarmaxModel3.h” and 

“CarmaxModel3.cpp”. In the structure of the header file, we create functions named 

“calcAutoregressiveGammaValues” and “calcMovingAverageGammaValues”, and coding the two 

functions in the source file, as shown in appendix for details. 

For calcAutoregressiveGammaValues Function, it calculates the γ values for the autoregressive 

polynomial. It iterates through the AR coefficient vector “arCoefficients” and applies the Schur 

transform using the SchurTransform function. The resulting γ values are pushed into 

“gamma_autoregressive” vector. 

Similarly, another function iterates through the MA coefficient vector “maCoefficients” and applies 

the Schur Transform using the same SchurTransform function. The calculated  γ  values are stored in 

the  “gamma_movingAverage” vector. 

Both functions follow a similar pattern of applying the Schur Transform iteratively to the coefficient 

vectors, which eventually produces the γ values for each polynomial order. 

After implementing the γ values for the polynomial coefficients, we need to extend the Schur 

transform code with a reference to the existing Dual Numbers file to include automatic differentiation 

to obtain the gradient, which is applied to the subsequent stability constraints. 

Finally we proceeded to add constraints to the AR and MA components. When calling the polynomial 

coefficients of each part,first specify the data structure of the ARMAX model as shown in Figure 4: 

 

Figure 4. Data structure of polynomial coefficients. 

It can be seen that the coefficients of the three parts are stored in the same data structure at the same 

time, so lags needs to be clarified when calling to initialise the other parts. 

The “arCoefficientFn” function is defined first. This function is used to compute the constraints on 

the coefficients of an autoregressive polynomial for use in optimisation or constraint solving algorithms. 

This function takes several arguments: noConstraints (the number of constraints to compute), 

constraintVector (an array storing the values of the computed constraints), noParameters (the number of 

parameters to optimise), parameters (an array containing the current parameter values), grad (an array 

storing the values of the gradient) and data (pointer to additional data). 
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This function computes the constraints on the coefficients of the autoregressive polynomial using the 

Schur transform method (implemented by the SchurTransform_DualNumber function) and Dual 

Numbers for automatic differentiation. 

It first extracts the autoregressive lags from the provided model instance “pArmaxModel”. The AR 

parameter values are copied into vectors of “dualNumber_t” objects, each initialised with the parameter 

values and indexes. 

Each parameter is then iterated over, the Schur transform is computed using logarithms, and the result 

is stored in the “gamma_autoregressive” vector. 

The computed γ is copied into the constraint vector. The grad array is also provided, and the gradient 

value is computed using the gradient value of the pair of even numbers and stored in the appropriate 

location in the grad array. 

The process of defining the “maCoefficientFn” function is similar to the above, and since the 

coefficients of the MA part are at the end of the sequence, the offset is added to ensure that the data is 

read correctly. 

Finally, we use the NLopt library to add the Schur stability coefficients as constraints in the 

optimisation process. Specifically use the nlopt_add_inequality_mconstraint function: this function 

comes from the NLopt optimisation library. 

It is used to add inequality constraints to the optimisation problem. It takes several arguments: opt: 

optimisation object or instance. The number of constraints to add (e.g. m_arCoefficients.size() for 

autoregressive constraints and m_maCoefficients.size() for moving average constraints). 

In this procedure it is necessary to call the previously constructed constraint functions, i.e. 

arCoefficientFn for autoregressive constraints and maCoefficientFn for moving average constraints. 

The code adds constraints to the optimisation problem based on the Schur stability coefficients of the 

ARMAX model, as shown in appendix for detail. 

The intent is that by adding these constraints, the optimisation process ensures that the resulting 

ARMAX model meets the stability criteria implied by the Schur stability coefficients. The code 

integrates the Schur stability constraints into the optimisation process, allowing the autoregressive and 

moving average coefficients of the model to be adjusted while maintaining stability. 

After debugging, writing and compiling the code, we use the test set and the dataset to train the model 

with the added stability constraints. The basic idea is to iterate the model by setting the number of ARs, 

eXs and MAs from 1 to 10 and 0 to 9, and continuously monitor and record the output MSE and the 

corresponding γ values of the AR and MA parts of the model for each run to obtain the results of the 

project. 

3.  Results & Evaluation 

We trained the ARMAX model using both test and training sets and integrated the newly incorporated 

stability constraints. The basic approach is to iteratively train the model by systematically varying the 

number of AR and exogenous inputs from 1 to 10, and the number of MAs from 0-9, using the three sets 

of parameters as inputs. The entire number of iterations is 1000, and during this iteration process, we 

continuously track and record the mean square error (MSE) output generated by the model to obtain the 

results of the training. In addition, we simultaneously recorded the corresponding γ values associated 

with the AR and MA components of the model. These γ  values reflect the nature of the stability 

characteristics of the ARMAX framework. The initial data obtained are shown in Table 2 below: 

Table 2. Partial data results with AR factor of  1. 

AR eX MA trainMSE testMSE arGamma maGamma 

1 1 0 2.25823 1.96825 0  

1 1 1 0.615304 0.565642 7.63E-07 -0.969475 

1 1 2 inf 1.96825 0 0 

1 1 3 2.25823 1.96825 0 0 

1 1 4 inf 1.96825 0 0 
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Table 2. (continued) 

1 1 5 2.25823 1.96825 0 0 

1 1 9 2.25823 1.96825 0 0 

1 2 0 0.436325 0.448315 1.15E-07  

1 2 1 0.314783 0.307362 -0.00057679 -0.676656 

1 2 2 0.715459 0.645225 -0.001144 -0.0694629 

1 2 3 0.565331 0.531864 -0.145537 -0.167957 

1 2 4 2.25823 1.96825 0 0 

1 2 5 2.25823 1.96825 0 0 

1 2 6 2.25823 1.96825 0 0 

1 2 7 inf 1.96825 0 0 

1 3 0 0.384883 0.402819 5.23E-07  

1 3 1 1.59101 1.38921 -1.38E-09 -0.138255 

1 3 2 0.739422 0.761121 -2.11E-06 -0.186431 

Due to the length of the data being excessive (1000 rows), only some of the results are shown here. 

We migrated the data results to a table and used the table tool to arrange and sort the analyses. 

Sorting the test MSE values in ascending order, we get the following well-performing portion of the 

data, as shown in Table 3: 

Table 3. The partial experimental data featured minimum test MSEs. 

(AR, MA, X) Train MSE Test MSE 

(6, 1, 10) 0.0563967 0.0634482 

(4, 1, 1) 0.0664063 0.0610614 

(3, 0, 9) 0.0563967 0.0634482 

(3, 0, 10) 0.0617341 0.0664063 

(3, 0, 8) 0.0556808 0.0666707 

(3, 0, 6) 0.0554786 0.0669287 

(3, 0, 7) 0.0557313 0.0670846 

(3 , 0, 5) 0.0598889 0.0696916 

(4, 0, 9) 0.0598764 0.0697292 

(3, 0 ,4) 0.0639966 0.0720276 

(3, 1, 1) 0.0533901 0.0840071 

(4, 1, 10) 0.0550325 0.0856364 

Note that this portion of the data includes numerous MA (Moving Average) terms with a value of 0. 

When the count of MA terms is 0, the entire model becomes simplified, leading to a reduction in 

computational load. Consequently, the resulting Mean Squared Error (MSE) tends to be lower. The 

utilization of this parameter subset can indeed showcase the performance of the simplified model. 

However, its significance in terms of the comprehensive stability analysis of the complete ARMAX 

model is limited. 

Use the table tool to filter out the parts with MA equal to 0 and re-sort them in ascending order 

according to test MSE, and the results obtained are shown in Table 4: 
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Table 4. The partial experimental data without 0 MA terms. 

(AR, MA, X) Train MSE Test MSE 

(6, 1, 10) 0.0563967 0.0634482 

(4, 1, 1) 0.0664063 0.0664063 

(4, 1, 10) 0.0550325 0.0840071 

(6, 1, 3) 0.0807268 0.0856364 

(6, 1, 7) 0.0943402 0.101537 

(7, 1, 9) 0.0650712 0.101759 

(3, 2, 2) 0.113967 0.108848 

(4 , 2, 10) inf 0.121754 

(2, 3, 1) 0.114337 0.124051 

(3, 2 ,3) 0.127448 0.127257 

(3, 3, 1) 0.122838 0.127257 

(7, 1, 1) 0.126041 0.129809 

We find the results of model runs without stability constraints for the same parameter case and plot 

them in Table 5 below: 

Table 5. Comparison of model test mse data before and after adding stability constraints 

(p,q,r) Test MSE Without Stability Constraints Test MSE with Stability Constraints 

(6,1,10) 0.967048 0.0634482 

(4,1,1) 0.0664063 0.0610614 

(3,1,1) 0.062504 0.0856364 

(4,1,10) 1877570000 0.0856364 

(6,1,3) 0.37666 0.101537 

(6,1,7) 5854.18 0.101759 

(7,1,9) 21.238 0.108848 

(3,2,2) 0.190581 0.121754 

(5,1,10) 10.7648 0.124051 

(4,2,10) 0.857073 0.125024 

(2,3,1) 0.104611 0.127257 

(3,2,3) 0.182462 0.129809 

(p,q,r) are the number of AR terms, the number of MA terms and the number of external input terms 

respectively. 

Data with this property are 168 out of 1000 sets of parameters. 

We compare the non-stable MSE data produced after using the genetic algorithm (this part of the 

data comes from the work of X. Zhang) with the MSE data after applying the stability constraints and 

get the Table 6 below: 

Table 6. Comparison of model test mse data after using the genetic algorithm and after adding stability 

constraints 

(p,q,r) Test MSE With Genetic Algorithm Test MSE With Stability Constraints 

(8, 7, 7) 2.40703e+11 1.96825 

(5, 3, 8) 6.34069e+15 1.96825 

(4, 5, 4) 1.43298e+13 1.96825 

(4, 3, 8) 6.50291e+13 1.96825 

(8, 6, 7) 1.79805e+13 1.96825 

(6, 7, 5) 7.60858e+17 1.96825 
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Table 6. (continued) 

(6, 3, 8) 5.42393e+14 1.96825 

(10, 6, 7) 7.93682e+13 1.96825 

(8, 7, 9) 8.14871e+14 1.96825 

(9, 5, 8) 1.25366e+11 1.96825 

(7, 5, 7) 2.33389e+12 1.96825 

(9, 7, 8) 8.01892e+12 1.96825 

(p,q,r) are the number of AR terms, the number of MA terms and the number of external input terms 

respectively. 

These exceptions occurred 28 times in 100 iterations of GA. 

We then compare the non-stable MSE data produced after apply the ACF constraints (this part of the 

data comes from the work of G. Liu) with the MSE data after applying the stability constraints and get 

the Table 7 below: 

Table 7. Comparison of model test mse data after using the acf constraints and after adding stability 

constraints 

(p,q,r) Test MSE With ACF Constraints Test MSE With Stability Constraints 

(4, 3, 3) 199.788 0.18777 

(8, 2, 6) 717863 1.96825 

(6, 1, 4) 680.825 0.157422 

(4, 1, 10) 1877570000 0.0856364 

(4, 4, 2) 14.831 0.17846 

(3, 1, 8) 37787100 1.03407 

(5, 4, 5) 572977 1.96825 

(10, 2, 8) 5256540000000 1.96825 

(6, 1, 6) 61.5681 0.217506 

(9, 7, 8) 8.01892e+12 1.96825 

(4, 4, 4) 338.049 0.185389 

(7, 2, 5) 54169.4 1.96825 

(p,q,r) are the number of AR terms, the number of MA terms and the number of external input terms 

respectively. 

We then demonstrate the other extreme case. Sorting the Test MSEs in descending order yields the 

results shown in Table 8  below: 

Table 8. Results characterised by large test MSE data 

(p,q,r) Test MSE With Genetic Algorithm Test MSE with Stability Constraints 

(1, 2, 1) inf 1.96825 

(1, 2, 4) 2.25823 1.96825 

(1, 2, 5) 2.25823 1.96825 

(1, 2, 6) 2.25823 1.96825 

(1, 2, 7) 2.25823 1.96825 

(1, 2, 8) 2.25823 1.96825 

(1, 2, 9) 2.25823 1.96825 

(1, 4, 1) 2.25823 1.96825 

(1, 4, 7) inf 1.96825 

(1, 4, 9) 2.25823 1.96825 
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Table 8. (continued) 

(1, 5, 1) 2.25823 1.96825 

(1, 5, 9) 2.25823 1.96825 

It can be observed in many combinations of parameters. After stability restriction, the obtained values 

of train MSE are often Inf or 2.25823 and the value of test MSE is 1.96825. 

Finally, we extracted some outliers. There were 22 outliers out of 1000 experimental results. 

4.  Discussions 

A primary observation that can be made is the evident enforcement of stability restrictions during the 

model’s execution. This is evident when we examine the sequence of γ values associated with the AR 

and MA components. Upon closer inspection, it becomes apparent that all the γ values are either greater 

than or very close to 0. Even in cases where values are slightly below 0, such as -6.71342e-12, they can 

be interpreted as negligible systematic errors within the realm of auto-differencing tolerance. 

A comparative analysis of the aforementioned sections underscores the substantial impact of stability 

constraints on the outcomes. In cases where the model parameters were initially deemed unstable, such 

as the configuration (4, 1, 10), the introduction of stability restrictions led to a remarkable reduction in 

Test MSE. Specifically, the Test MSE, which was initially at an excessively high and problematic level, 

was successfully brought down to a range considered normal. This transformation rendered the 

previously challenging parameter configuration, (4, 1, 10), viable and practically applicable. 

Certain parameter combinations that initially exhibited an unstable tendency also demonstrate 

noticeable improvements when stability restrictions are applied. For instance, consider the parameter set 

(7, 1, 9), which originally yielded a high MSE value of 21.238, indicative of instability. However, 

following the imposition of stability restrictions, the MSE value drastically drops to 0.10, signifying a 

remarkable enhancement in usability. 

This pattern suggests that similar parameter combinations could experience enhanced usability by 

incorporating stability restrictions. On the contrary, parameter sets that were inherently stable, such as 

(4, 1, 1), consistently maintain nearly identical MSE values before and after the application of stability 

restrictions. This finding indicates that stability restrictions do not significantly interfere with the 

performance of initially stable parameter combinations. 

The occurrence of Inf values in the training MSE, along with a test MSE value of 1.95825, suggests 

that there might be issues related to convergence during the training process. The presence of Inf values 

could indicate that the optimization algorithm struggled to find optimal parameter values, leading to 

such results. Interestingly, both the γ  values for the AR and MA components are observed to be 0, 

indicating that stability constraints are enforced on the coefficients of both the AR and MA polynomials. 

In the context of the optimization algorithm’s logic, it calculates the current γvalue and adjusts the 

coefficients through automatic differentiation if they are deemed unstable. However, due to the 

mandatory stability requirement, the exact nature of the modified coefficients remains uncertain. This 

situation could arise from the imposition of stability constraints, causing the polynomial coefficients to 

converge to an adjustable limit value where further changes are restricted. Consequently, the model 

might not fully perform its predictive function, resulting in consistent outcomes across various 

parameter sets. 

In light of these results, it becomes evident that the ARMAX model, under this scenario, ensures 

stability. However, this stability assurance might come at a cost. While the model maintains stability, its 

predictive functionality could be compromised due to the limited adjustments allowed by the stability-

enforced coefficient convergence. This trade-off between stability and predictive performance should 

be carefully considered when interpreting the results of the ARMAX model under these conditions. 

Finally, we purposefully analysed these 22 sets of outlier data and observed some common features. 

These data generally exhibit a small mean square error (MSE) on the training set and a large MSE on 

the test set. This may indicate that the model performs well on the training data but poorly on the unseen 

data, which is consistent with an overfitting problem. 
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The root cause of overfitting is that the model overfitted the noise and specific samples in the training 

data during training, thus failing to generalise well to new data. In these 22 data sets, we noticed a 

common feature of the AR part, namely, unusually small γ  values, which implies that the stability 

constraints are not well enforced under these parameter combinations. For example, the γ  value in 

parameter combination (8, 1, 10) is -12.3496, which is very rare in the whole training results. This may 

be due to individual anomalies in the AR part of the training process and is not generalisable or 

reproducible. In order to determine the root cause of the problem, it is necessary to train the model 

several times and compare the results. 

Furthermore, in combination with the occasional Inf phenomenon, we can speculate that stability 

limitations may have contributed to the problem of long computation times. Therefore, subsequent work 

needs to further optimise the algorithm to reduce the computational complexity in order to handle the 

stability constraints more efficiently while improving the training efficiency of the model. 

5.  Conclusions 

In this project, we follow a process structure that firstly implements the Schur transform based on the 

properties of the AR and MA parts of the model, and further implements its autonmetic differentiation 

function, and finally as a stability constraints algorithm to achieve the optimisation of the existing 

ARMAX model. The model is then trained using a test set and a dataset, focusing on the performance 

and impact of the ARMAX model with the introduction of stability constraints. Through a series of 

experiments and analyses, a number of important conclusions and findings are drawn, providing insights 

into the stability and performance enhancement of the model. 

Based on the data obtained after training, it is shown that in many cases, the performance of the 

model is significantly improved by introducing stability constraints. In particular, for the originally 

unstable parameter combinations, after adding stability constraints, the MSE of the model is reduced 

from abnormally high values to normal levels, which proves the effectiveness of the stability constraints. 

We also note that the stability constraint may cause some computational problems, such as the 

appearance of Inf values. This may be due to the fact that the stability constraint increases the complexity 

of model training, and further optimisation of the algorithm is required to cope with these problems. 

As for the data performance with smaller MSE on the training set and larger MSE on the test set for 

certain parameter combinations, this may be due to an overfitting problem, i.e., the model performs well 

on the training data but poorly on the test data. For this part of the data, we need to take more measures 

to prevent the model from overlearning the training data in order to improve its generalisation ability. 

In addition, we cited the outlier data, such as cases where stability constraints did not effectively 

constrain certain parameter combinations. For these problems, we need to conduct more in-depth 

research and experiments on the specific changes in the polynomial coefficients within the model in 

order to identify the root causes and propose solutions. 

The research in this project has empirically studied and deeply analysed the stability constraints of 

the ARMAX model, and the performance of the model after stability constraints has been improved by 

about 10% ((number of parameter combinations that effectively improve the performance - anomalous 

combinations)/total number of trials). Our work not only from implementing and verifying the validity 

of the stability constraints, but also reveals the possible causes of model overfitting problems and 

anomalies.  

However, there are still many issues that need to be further investigated, including more extensive 

parameter combination experiments, more rigorous stability analyses and more optimal algorithm 

designs.  

6.  Future Work 

This project was only an initial attempt to investigate the stability constraints of the ARMAX model and 

there is still much work to be done in the future: 

•Using multiple datasets: Due to the time requirement of the project, only one dynamic dataset was 

used this time. In the future, we can train the ARMAX model with multiple datasets and compare and 
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analyse the results obtained to obtain more accurate results. 

•Explore more stability measurements: Although this study uses the Schur transformation 

withγvalues as an indicator of stability, exploring other stability measures could provide a more 

complete picture of the model’s behaviour. Investigate methods that consider system matrix eigenvalues 

or other stability criteria. 

•Optimising Algorithms: As noted in the study, a number of computational issues and occurrences 

of “Inf” values were noted. Future work will focus on optimising the underlying algorithms, possibly 

by exploring more efficient optimisation techniques or parallel processing to reduce training time and 

improve stability. 

•Investigating individual polynomial coefficients: There is a need to develop research to explain the 

impact of individual coefficients on overall stability and performance. This will help provide insight 

into the trade-off between stability constraints and prediction accuracy. 

By addressing these areas in future research, we can deepen our understanding of ARMAX model 

stability and performance and develop more robust and reliable modelling techniques for a variety of 

applications. These further studies will help to better understand and apply the ARMAX model for 

stability and performance optimisation in real-world problems. 

In addition, in the future it will be necessary to merge the other two projects, which are the use of 

genetic algorithms to find the values of the ARMAX model parameters and the use of ACF to impose 

constraints on the ARMAX model. The ultimate goal is to run the stability constraints in conjunction 

with the other two components to obtain the best model optimisation results. 
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