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Abstract. First-person shooter games are experiencing a surge in popularity. As more players 

join, advanced AI-based cheats have emerged. These cheats simulate human gameplay, sending 

mouse inputs, making them hard to detect and counter. Therefore, this research presents a novel 

approach that utilizes telemetry data analysis to identify and counteract cheating in FPS games. 

The main objective of this study is to develop an innovative anti-cheating system that can 

effectively detect and prevent players from exploiting AI-based cheats to gain unfair advantages. 

To achieve this, extensive telemetry data is collected during gameplay. The data contains the 

real-time cursor position when the player is playing the game. Besides, Machine learning and 

deep algorithms are applied to analyse the telemetry data and distinguish between human player 

behaviour and AI-driven cheating patterns. Decision Tree, Random Forest, LSTM, and CNN are 

applied for this research. And in the final evaluation, CNN’s accuracy reached around 80% which 

proves it is a possible mode to be used for this problem. The significance of this research lies in 

its contribution against cheating in FPS games, particularly those exploiting AI technologies to 

gain unfair advantage. The proposed telemetry-based approach offers a solution to safeguard 

competitive gaming and insight into the game company based on this novel way for further 

experiments. 
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1.  Introduction 

With the rapid progression of technology, First-person shooter (FPS) games, including notable titles 

such as CSGO, VALORANT, and Overwatch have seen a significant surge in popularity [1]. These 

games immerse players in highly realistic virtual environments, delivering unparalleled gaming 

experiences [2]. However, alongside this popularity, there has been an unwelcome increase in cheating 

incidents that undermine the fairness and integrity of the gaming community [3]. Cheating not only 

compromises the experiences of honest players but also presents a formidable challenge to game 

developers striving to maintain a level playing field. 

Currently, anti-cheating software can easily detect and counteract traditional cheats that fetch and 

modify game data [4]. However, cheaters have evolved, now employing AI and Computer Vision (CV) 

technologies to evade detection. Current anti-cheating mechanisms, such as VAC, delve into the user’s 

system, raising privacy concerns [5-8]. Statistical-based systems like FairFight, though privacy-

compliant, have shown ineffectiveness in some games [9]. The infiltration of CV-based cheats, 

empowered by sophisticated algorithms like YOLOv5, exacerbates the challenge, rendering traditional 

anti-cheating systems impotent [10-11]. 
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To address these challenges, this research proposes a novel solution that hinges on telemetry data 

analysis to detect and counter AI-driven cheating in FPS games (System Overview is shown in Figure 

1). This research aims to overcome the limitations of existing anti-cheating mechanisms while 

safeguarding player privacy and enhancing detection effectiveness. The subsequent sections of this 

paper elaborate on the proposed system’s methodology, delve into telemetry data analysis, and evaluate 

AI and CV detection algorithms. 

In conclusion, mitigating AI-based cheating is crucial to preserving the integrity and enjoyment 

intrinsic to FPS games [12]. This study is committed to advancing a balanced and equitable gaming 

environment, leveraging innovative technologies and approaches. 

Figure 1. System overview. (Photo/Picture credit: Original) 

2.  Method 

The primary objective of this research is to detect AI-assisted cheating in FPS games using mouse 

coordinate data. By analysing data and machine learning techniques, this research aims to identify 

unusual player behaviours and enhance anti-cheating systems. 

2.1.  Workflow 

The flowchart of this research is shown in Figure 2. 

1) Data Collection and Pre-processing: The cornerstone of this research is the collection of mouse 

coordinate data from players during gameplay sessions. Although in other related work, many different 

kinds of data are collected, this research believes that only collecting mouse coordinates can still offer 

profound insights into player behaviours and potential cheating mechanisms. Once collected, the data 

will undergo a thorough cleaning and pre-processing phase to ensure its readiness for subsequent 

analysis and model training. 

2) Data Analysis: The cleaned mouse coordinate data will be subjected to exploratory data analysis 

techniques. The objective is to identify patterns and trends that might be indicative of AI-assisted 

cheating. Visualization techniques, especially time-series plots of mouse movements, will be 

instrumental in understanding the player's behaviours. Besides, After the analysis of these cursor data, 

several features would be extracted. These features will be the key to running deep learning. 
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3) Telemetry-Based AI Detection: The telemetry data, in this case, refers to mouse coordinates, 

which will be the primary input for the anti-cheating systems in this project. AI algorithms (Deep 

Learning) will be developed to analyze this data in real-time, aiming to detect any anomalies or patterns 

that suggest cheating. 

4) Machine Learning Model Training: Machine learning (Deep Learning) models will be trained 

using the mouse coordinate data and the features extracted to differentiate between normal gameplay 

and potential AI-assisted cheating. Feature engineering will be crucial, as the data is limited to mouse 

coordinates. For this project, Decision Tree, Random Forest, LSTM and CNN are explored to determine 

which ones are best suited for this specific dataset and problem because they are all proven to be suitable 

for similar work [13-19]. 

5) Evaluation: The evaluation phase will focus on determining which models are most suitable for 

the task and identifying potential models for future work. Using metrics like accuracy, the performance 

of each model will be assessed. The goal of evaluation in this project is not to find the best model to 

solve the problem but to find a possible model that is suitable for further research. 

 

Figure 2. Workflow chart. (Photo/Picture credit: Original) 

2.2.  Implementation 

2.2.1.  Data Collection Process: The Mouse Data Collection Tool is integral to this study, designed to 

adhere to privacy norms, ensuring that it only gathers data from the researcher's gameplay. Engineered 

to the Windows operating system, the tool is crafted using the C++ programming language, 

complemented by the Windows API.  

As shown in Figure 3, in the initial phase, global variables are established, laying the foundation for 

the program. These variables encompass a mouse hook, a vector for storing mouse coordinates, a 

maximum position threshold, a recording status indicator, a flag denoting the data's origin (human or 

AI), and variables to capture the previous mouse position and button status.  
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The recording process begins with the start recording function, which operates in a separate thread, 

clearing existing mouse position data and capturing the current position. It enters a loop to continuously 

record mouse positions until the 'shouldRecord' variable is deactivated, ensuring the vector size remains 

within a defined threshold. The end recording function is triggered by setting 'shouldRecord' to false, 

posting a quit message, and unhooking the mouse hook. The MouseHookProc function handles mouse 

events, performing operations based on distinct events. The main function, the tool’s entry point, creates 

a thread for the start recording function to accommodate the continuous coordinate recording and 

conditional data writing. The process continues with the setting of the mouse hook, entering a message 

loop, and concludes with the unhooking of the mouse hook and the completion of the recording thread. 

 

 Figure 3. Process of data collection. (Photo/Picture credit: Original) 

2.2.2.  Feature Engineering: The process of transforming raw mouse movement data into a structured 

format suitable for machine learning and deep learning applications is executed with precision. As 

shown in Figure 4, each XML file containing mouse data is loaded and processed. The data, once 

extracted, is processed to compute a set of distinct features, each offering insights into different aspects 

of mouse movement dynamics. Subsequently, sklearn’s StandardScaler standardises these features to 

ensure uniformity and consistency, enhancing the efficacy of the learning algorithms. The processed 

and scaled features are then aggregated into a dataset, facilitated by the custom PyTorch MouseDataset 

class. This dataset is serialised and stored, ensuring its readiness for model training and evaluation tasks. 

Each feature extracted and computed from the raw data plays a pivotal role in characterizing mouse 

movement patterns. The specifics of each feature are listed below: 

1) Coordinates: The X and Y coordinates, extracted directly, represent the spatial positions of the 

mouse, serving as foundational data points for further computations. 

2) Difference with Previous Coordinates: This feature calculates the spatial displacement between 

consecutive coordinates, offering insights into the direction and magnitude of mouse movements. 

3) Moving Speed: Derived by dividing the coordinate differences by a specific time interval 

(perMsGetCoursor), it quantifies the velocity of mouse movements, shedding light on the user's pace of 

interaction. 

4) Acceleration: Acceleration is computed as the rate of change in speed, providing nuanced insights 

into the variations in mouse movement speed, indicative of user responsiveness and behaviour dynamics. 

5) Back Movement Flag: A binary feature indicating the occurrence of backward mouse movements. 

It is instrumental in identifying specific patterns and anomalies in user interactions. 

6) Label: Extracted from the XML’s Flag attribute, it distinguishes data generated by humans from 

that by AI, serving as the target variable for supervised learning tasks. 

Each feature contributes uniquely to the holistic understanding of mouse movement dynamics, and 

their collective integration into the dataset ensures a comprehensive basis for training robust machine 

learning and deep learning models. 
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Figure 4. Data process flow. (Photo/Picture credit: Original) 

2.2.3.  Model Training: In the quest to understand mouse movement patterns, a methodical and 

structured model training was executed, utilizing both deep learning and traditional machine learning 

techniques. The process was grounded in several extracted features, each playing a vital role in the 

training and analysis. 

1) CNN (Example training process is shown in figure 5 below) : 

Input Layer: The foundational data, the X and Y coordinates, were fed into the model, setting the 

spatial context of mouse interactions. 

Convolutional Layers: These layers processed the differences between consecutive coordinates. By 

examining spatial displacement, the layers discerned direction and magnitude nuances in mouse 

movements. 

Fully Connected Layers: Integrated the more intricate features like moving speed and acceleration. 

Here, the speed, obtained by parsing the difference in coordinates over a time interval, was processed 

alongside acceleration, providing the model with insights into variations in mouse movement velocity. 

These metrics, together, highlighted user behaviour dynamics and responsiveness. 

2) LSTM: 

The LSTM, given its sequential data processing nature, was particularly effective in comprehending 

the "Back Movement Flag". Its architecture was attuned to capturing instances of backward mouse 

movement and understanding anomalies in user interactions [20]. 

Traditional Machine Learning Techniques: 
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3) Random Forest:  

This ensemble model, with its multitude of decision trees, utilized all the features. Notably, it leaned 

on the "Label" feature, extracted from the XML's Flag attribute, to distinguish human-generated data 

from AI, enhancing its classification prowess. 

Decision Tree: 

The hierarchical structure of this model was adept at processing features like acceleration and the 

back movement flag. Given the tree's nature, the decision nodes were often rooted in these pivotal 

features, ensuring a thorough examination of user patterns.  In summation, the synthesis of these models, 

bolstered by the extracted features, furnished a holistic perspective on mouse movement patterns. Each 

feature was meticulously integrated into the training process, ensuring that every aspect of mouse 

behaviour was analyzed and understood. 

Figure 5. Training example of CNN [21]. 

3.  Result & Evaluation 

To deeply analyze mouse movement patterns, several models were rigorously evaluated, namely: 

Decision Tree, Random Forest, LSTM, and CNN. Their performance was benchmarked against metrics 

including accuracy, recall, precision, and F1 score. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑦 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
(1) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(2) 

 

Precision =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(3) 

F1 Score =
 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4) 

3.1.  Initial Evaluation 

Table 1. Model performance with 25 cases. 

Model Accuracy Recall Precision F1 Score 

Decision Tree 44% 0% 0% 0% 

Random Forest 44% 0% 0% 0% 

LSTM 44% 7.14% 50% 12.5% 

CNN 100% 100% 100% 100% 
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As shown in Table 1 above, the CNN model exhibited impeccable performance with an accuracy of 

100% in the initial evaluation on a test set of 25 cases. This suggests a robust model capable of discerning 

intricate patterns in the dataset, with no errors in classification. On the contrary, both Decision Tree and 

Random Forest models stagnated at 44% accuracy and zeroed out on other metrics. Such uniform 

predictions, especially by models that are typically versatile, indicate a likely class imbalance or 

potential inadequacies in feature extraction or representation. 

 The LSTM's performance was marginally better than the Decision Tree and Random Forest 

models but was dwarfed by the CNN. It managed an accuracy of 44%, and some level of precision and 

recall, signifying its capacity to make diverse predictions but still lacking in accuracy. 

3.2.  Extended Evaluation 

Table 2. Model performance with 177 cases. 

Model Accuracy Recall Precision F1 Score 

Decision Tree 44.07% 0.00% 0.00% 0.00% 

Random Forest 44.07% 0.00% 0.00% 0.00% 

LSTM 42.37% 1.01% 20.00% 1.92% 

CNN 75.14% 86.87% 73.50% 79.63% 

For a more comprehensive evaluation, the test cases were extended to 177. As shown in Table 2 above, 

the CNN model's performance was slightly decreased but still significant at 75.14% accuracy. This dip, 

while expected with a larger and potentially more diverse test set, still underscores CNN's superiority in 

handling this specific problem, especially when juxtaposed against the other models. 

While the Decision Tree and Random Forest models maintained their performance levels, the LSTM 

showed slight variations. Although the models of decision trees and random forests maintain a relatively 

stable accuracy, they are not convincing. This is because they continually assume that all test data is 

artificial. This validates, in part, that traditional machine learning has no way of distinguishing the 

information in these mouse coordinates. 

3.3.  Inner Detail of CNN & LSTM 

Model complexity can impact deep learning outcomes [22]. Complexity can enhance pattern recognition 

but may also introduce overfitting if not matched with sufficient data. This research examined the CNN 

and LSTM models to understand this relationship. 

Table 3. Model parameters and sizes of CNN. 

Layer (type) Output Shape Param # 

Conv1d-1 [-1, 16, 1500] 448 

ReLU-2 [-1, 16, 1500] 0 

Conv1d-3 [-1, 32, 1500] 1,568 

ReLU-4 [-1, 32, 1500] 0 

Linear-5 [-1, 16] 528 

ReLU-6 [-1, 16] 0 

Dropout-7 [-1, 16] 0 

Linear-8 

Total params 

Trainable params 

Non-trainable params 

Input size (MB) 

[-1, 2] 

34 

2578 

2578 

0 

0.05 
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Forward/backward pass size (MB) 

Params size (MB) 

Estimated Total Size (MB) 

1.10 

0.01 

1.16 

Table 4. Model parameters and sizes of LSTM. 

Layer (type: depth-idx) Param # 

Total params 36,226 

Trainable params 36,226 

Non-trainable params 0 

Total mult-adds (M) 

Input size (MB) 

Forward/backward pass size (MB) 

Params size (MB) 

Estimated Total Size (MB) 

0 

0.05 

0.00 

0.00 

0.05 

As shown in Tables 3 and 4, the LSTM, with 36,226 parameters, achieved an accuracy of 44%. In 

contrast, the CNN, having 2,578 parameters, reached 100% accuracy in initial tests. These results 

indicate that performance is not directly correlated with parameter count. The architecture of the CNN, 

designed for spatial data such as mouse movements, likely contributed to its superior performance. 

Additionally, the CNN demonstrated faster training speed, even with its larger memory requirement. 

4.  Discussions 

After analysing the problem, feature engineering, model selection and training, testing, and comparing 

the models, this experiment practically obtained some positive results. Simply analyzing a player's 

mouse position is somehow enough to determine whether a player is cheating or not. And in the 

comparison, the CNN model shows a far better performance than other models. Based on the above, the 

following are the advantages and disadvantages of the experiment, as well as the room for future 

expansion. 

Strengths: 

1) Focused Approach: One of the study's major strengths is its concentrated approach to analyzing 

real-time cursor position data. This provides a clear pathway for detecting AI-driven cheating 

patterns, streamlining the detection process without being overwhelmed by excessive data types. 

2) Comparative Model Analysis: The rigorous evaluation of different models offers a comprehensive 

view of their performance metrics. Such a comparative study is essential to ascertain the best-fit 

model for this specific problem. 

Limitations: 

1) Dataset Limitations: The research is based on data that the researcher collected, which might not 

fully capture the diverse range of player behaviours, especially when it comes to different AI 

cheating software [23]. 

2) Model Specificity: The study's focus on one specific AI cheating software might limit its 

generalizability. Different AI cheating software might present varied cursor movement patterns, 

which the models might not detect as effectively. 

3) Over-reliance on Cursor Data: While the study's focus on cursor position data is its strength, it 

might also be its limitation. Other data types, such as keyboard input and in-game statistics, which 

were used in other studies, could provide a more holistic view of player behaviour. 

Future Research Directions: 

Table 3. (continued). 
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1) Diversified Data Collection: Future research should consider gathering data from a more diverse 

player base, encompassing different skill levels, gaming platforms, and multiple AI cheating 

software [24-25]. 

2) Real-time Cheat Detection: With the rise of online competitive gaming, real-time cheat detection 

will be invaluable. Research should explore models that can efficiently operate in real-time without 

compromising game performance. 

3) Collaborative Approach: Collaborating with professional FPS players, game developers, and other 

stakeholders can offer a more rounded perspective, refining the data collection process and model 

evaluation. 

4) Exploration of Hybrid Models: Instead of relying on a single model, future research could delve 

into hybrid models that combine the strengths of CNNs, LSTMs, and other algorithms to achieve 

even better accuracy. 

5) Model Training Against Advanced AI Cheats: As AI cheating software evolves, so should the 

detection models. Training the models against advanced AI cheats will ensure they remain effective 

in the ever-evolving gaming landscape. 

5.  Conclusion 

This research addressed the emerging challenge of AI-based cheating software in FPS games, which 

threatens the fairness and integrity of competitive gaming. By analyzing real-time cursor position data 

during gameplay, the study aimed to differentiate between human and AI-driven cheating patterns. The 

primary revelation was that solely examining cursor position data effectively distinguishes between 

these patterns. Contrastingly, other studies have integrated more diverse data types, including keyboard 

input and in-game statistics. The current model, grounded on data collected by the researcher, might not 

be wholly representative, necessitating a broader data collection in future endeavours. The study's focus 

was limited to one AI cheating software, further narrowing its applicability. Future directions include 

the collection of diversified data, examination of multiple cheating software, real-time cheat detection, 

and collaborations with both professional FPS players and game developers. Additionally, cross-

platform testing is essential given the variance in gameplay characteristics across platforms. This 

research's significance lies in aiding game companies to understand AI cheating complexities and 

subsequently design countermeasures. It also underscores the need for a judicious balance between data 

collection, player privacy, and game performance. Importantly, CNNs were identified as particularly 

effective models for this problem, consistently outperforming LSTMs. However, this study does not 

simply conclude that CNNs are necessarily superior to LSTMs in handling this event because, in general, 

LSTMs have a greater advantage in handling very large data volumes and time-spanning datasets. For 

this experiment, the dataset taken was not large enough and relatively homogeneous, so the unknown 

potential of LSTMs may be discovered in subsequent experiments. Although this study has come to very 

illuminating conclusions, there are still many future research directions that can continue to be tested in 

depth. For example, training against AI cheating software and AI anti-cheating software, the 

introduction of larger training datasets, hybrid training of models, etc. 
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