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Abstract. The mathematical method known to be Quadratic Programming is a branch of Convex 

Programming or Convex Optimization, which is then a peculiar case of Mathematical 

Optimization given a series of restrictions including a convex function to minimize. The Smallest 

Ball Problem is a problem where we seek to find the smallest enclosing ball of given points on 

a plane. Convex Optimization provides a solution to the Smallest Ball Problem. There are several 

ways to characterize a convex programming problem and its solutions, the most important of 

which is called the KKT conditions. By relating the Smallest Ball Problem to solving a Convex 

Programming Problem and using the Python packages, the radius, as well as the central point of 

the Smallest Ball, will be found. In addition, the underlying algorithm for solving Convex 

Programming Problems is studied. It can be concluded that Convex Programming, or more 

specifically, Quadratic Programming, gives a feasible solution to the Smallest Ball Problem. 

Keywords: Convex Optimization, Quadratic Programming, Convex Programming, 

Mathematical Optimization, Smallest Ball Problem. 

1.  Introduction 

Convex Programming is an area of mathematics with a broad range of applications in numerous areas 

of study, including estimation and signal processing, automatic control systems, communications and 

networks, circuit design, data analysis and modeling, and financial statistics. The mathematical aspects 

of Convex Optimization have been studied for about a century by mathematicians, while some newer 

aspects of applications are recently discovered and stimulated new interest in the topic. 

The Smallest Ball Problem, or The Smallest Enclosing Ball Problem, was originally raised by 

mathematician James Joseph Sylvester in 1857. While it has been studied for over 100 years, new 

aspects and solutions to the problem are still emerging. Boris Mordukhovich et al discusses the primary 

aspects of the Smallest Ball Problem. The researchers start by distinguishing between the Smallest 

Enclosing Ball Problem and the Smallest Intersecting Ball Problem, especially focusing on proving the 

existence and uniqueness of their solutions by exploring the properties and features of the maximal time 

function, under the assumptions that it’s in finite-dimensional Euclidean space [1]. In another article by 

Kaspar Fischer, Bernd Gärtner, and Martin Kutz, the researchers discuss a combinatorial algorithm that 

computes the smallest of the enclosing balls of a set of given points in Euclidean space, studied in high-

dimensional situations. The algorithm resembles the simplex method in Linear Programming, and it 

normally requires only just a few iterations when it comes to lower dimensions and it has the capability 

to handle cases of very high dimensions [2]. 
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The goal of this paper is to combine the two, namely the Convex Programming Problem and the         

Smallest Ball Problem, by examining the restraints, theories, and lemmas related to constructing a 

Convex Optimization Problem, and then the Smallest Ball Problem will be studied by solving a   specific 

Convex Programming Problem. 

2.  Description of the Problem 

To start with, Convex Functions are characterized in the following way.  

 

Figure 1. Convex geometric shape [1]. 

For a Convex Programming Problem in the 3-D space, it is essential to have both a Convex Function 

and a Convex Set to characterize the convexity. Figure. 1 above displays a Convex Function featuring 

convexity. There are three ways to characterize such a function.  

𝑓((1 − 𝑡)𝑥 + 𝑡𝑦)  ≤ (1 − 𝑡)𝑓(𝑥) + 𝑡𝑓(𝑦) for ∀𝑥, 𝑦 ∈ 𝑅𝑛, 0≤ 𝑡 ≤ 1 (1) 

∀𝑥, 𝑧 ∈ 𝑅𝑛, 𝑓(𝑥) ≥ 𝑓(𝑧) + ∇𝑓(𝑧) ∙ (𝑥 − 𝑧) (2) 

∀𝑥 ∈ 𝑅𝑛, 𝐷2𝑓(𝑥) ≥ 0 (3) 

For Eq. (1), one of the three inequalities above, it states that for all the arbitrary x and y in the domain 

of the Convex Function, every value that is on the linear connection of both points is always greater or 

equal to the values on the convex region between the points. Eq. (2) states that starting from a point z in 

the convex region, all the points in the direction of the tangent line have values smaller or equal to the 

corresponding points in the convex region. Finally, in Eq. (3), D represents the Hessian Matrix, obtained 

from taking the second derivative of the original function. It states that all the eigenvalues of the Hessian 

Matrix are greater or equal to 0. By satisfying one of the three conditions, a Convex Function is then 

constructed. We can also derive from Eq. (3) that a quadratic form of the function  

𝑓(𝑥) = 𝑥𝑇𝐷𝑥 (4) 

is convex if and only if 𝐷 ≥ 0 and that is all the eigenvalues of D are greater or equal to 0. Another way 

to put it is that D is a positive semi-definite matrix. We can see from the introduction above that convex 

programming closely resembles a linear programming problem. This will also be demonstrated by 

further exploration of how to solve a convex programming problem using computer programming as 

well as algorithms. 

3.  Method 

This section will be dedicated to characterizing the solutions to the Convex Programming Problems and 

then it will be adapted to the Smallest Ball Problem. After that, the internal algorithm of calculation will 

be explained. 
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3.1.  Theorems 

There are several theorems related to characterizing the solutions to Convex Optimization Problems. 

Given the listed conditions that  

𝐶 ⊂  𝑅𝑛 is a convex set of constraints 

𝑓: 𝑅𝑛 → 𝑅 is a convex function 

The following statements is true, 

𝑥∗ minimizes 𝑓(𝑥) over 𝐶 

If and only if, 

∇𝑓(𝑥∗) ∙ (𝑥 − 𝑥∗) ≥ 0, ∀𝑥 ∈ 𝐶 (5) 

Another important condition for characterizing the feasible solutions to a Convex Programming 

Problem is the famous KKT conditions, or the Karush–Kuhn–Tucker optimality conditions. Previously, 

the KKT conditions play a crucial role in the optimization theory. However, one important feature is 

that KKT conditions can be adapted to solve modified optimization problems. In a paper by Giorgio 

Giorgi, Bienvenido Jiménez & Vicente Novo, the researchers extend the “approximate KKT conditions” 

from originally a scalar optimization problem that bears equality and inequality constraints to a 

multiobjective optimization problem. The researchers prove that this condition suffices to say that a 

point to is a locally weak efficient solution free from any constraint qualification and is also sufficient 

to meet the assumptions of convexity [3]. In another work by Gabriel Haeser and María Laura Schuverdt, 

the researchers proved that a slightly modified version of the AKKT (Approximate Karush–Kuhn–

Tucker) condition suffices a convex problem, either for optimization or variational inequalities [4]. KKT 

conditions are also able to be generalized to serve characterization of efficient solutions to optimization 

problems with constrained interval, according to the research paper [5]. In this paper, similarly, KKT 

conditions will also be used to verify solutions to the Convex Programming Problem and then adapted 

to solve the Smallest Ball Problem. 

Given 𝑥 ≥ 0, KKT conditions state that a feasible solution 𝑥∗ is optimal if and only if, 

∃�̃� ∈ 𝑅𝑚 such that ∇𝑓(𝑥∗) + 𝐴𝑇�̃�  ≽ 0                                                                                           (6) 

Which equality stands in between when 𝑥𝑗
∗ > 0 

And inequality when 𝑥𝑗
∗ = 0 

KKT conditions are then applied to characterize the solution to the Smallest Ball Problem as the 

solution of a certain quadratic program. Now, relating the Smallest Ball Problem to Convex 

Programming Problem, the following theorem stands. This is a deduction from the KKT conditions 

given the specific Smallest Ball Problem restraints. 

Let {𝑃1, 𝑃2, … 𝑃𝑛} be points in 𝑅𝑑 while 𝑛 ≥ 𝑑 

Let Q be the 𝑑 × 𝑛 matrix with coordinates of the points as columns, like so 

[
↑

𝑃1

↓

↑
 𝑃2

↓

↑
 𝑃3

↓

⋯ ] 

Now for the standard setup of a Convex Programming Problem, the Convex Function to minimize would 

be  

𝑥𝑇𝑄𝑇𝑄𝑥 −  ∑ 𝑥𝑗𝑃𝑗
𝑇𝑃𝑗

𝑛

𝑗=1

(7) 

Subject to the constraints ∑ 𝑥𝑗 = 1𝑛
𝑗=1  given 𝑥 ≥ 0   

The theorem states that for this certain Convex Programming Problem, the following statements are 

true: The Convex Programming Problem above has an optimal solution 𝑥∗ and that ∃𝑃∗ such that 𝑃∗ =
𝑄𝑥∗ is true for every optimal solution 𝑥∗. In relation to the Corresponding Smallest Ball Problem, it can 

be concluded that 𝑃∗ is the center of the ball and that square of the radius of the ball is equal to −𝑓(𝑥∗). 
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Geometrically, the following lemma is crucial for solving the Smallest Ball Problem. 

For an array of points given by 𝑆 = {𝑆1, 𝑆2, 𝑆3, … 𝑆𝑘} ⊆ 𝑅𝑑, k is the number of points and d is 2 

which is the second dimension, the lemma characterizes the center of the smallest enclosing ball. If 𝑆∗ 

is the center of the enclosing ball, then the following two statements are deemed as equivalent, 

B is the unique smallest enclosing ball of S ↔ There is no hyperplane that separates S from 𝑆∗ 

Also, there are other properties to the smallest enclosing ball the center of the ball is convexly formed 

by all the points that are on the smallest enclosing ball. 

Now that the theorems related to the uniqueness and existence of a solution are discussed, to actually 

solve the Smallest Ball Problem, various algorithms developed by mathematicians will be introduced. 

In a paper written by Kasper Fischer and Bernd Gärtner, the researchers discuss algorithms for solving 

the Smallest Ball Problem without utilizing Mathematical Optimization. They aimed to focus on small 

number cases where 𝑛 ≤ 𝑑 + 1 to deduct the compulsory primitive operations and validate the proof 

that they can be effectively realized by rational arithmetic. Their algorithm is inspired by the observation 

that this problem bears a combinatorial nature of Discrete Mathematics and the randomized linear-time 

algorithm developed by Welzl, which might not work for high numbers but worked for small instances 

[6]. In another paper by Shaohua Pan and Xingsi Li, the researchers developed a simple algorithm for 

high dimensional Smallest Ball Problems. Basically, the researchers reformulated the problem as an 

unconstraint Convex Optimization Problem that involves the maximum function max{0, 𝑡}, and it can 

efficiently handle a problem with n up to 10,000 [7]. A similar method is also utilized by Samuel Zürcher 

were finding the smallest enclosing ball is defined as looking for a center 𝑐 and a radius 𝑟 so that to 

minimize the maximum distance 𝑟 from a point of the point set to the center 𝑐 [8]. 

In this paper, the following algorithms will be introduced so as to solve constraint Convex 

Programming Problems, which in turn, solve Smallest Ball Problems. 

3.2.  Active Set Method 

 

Figure 2. Active Set Method [2]. 

In the realm of mathematical optimization, the active-set method is a commonly used algorithm for 

identification of the so-called active constraints in a set of given inequality constraints. The active 

constraints are then written in the form of equality constraints, transforming an inequality-constrained 

problem and creating a more straightforward equality-constrained problem, subordinate to the inequality 

problem. Here, this paper defines 𝑋0 as an arbitrary feasible point and 𝑊0 an initial working set of 

constraints. Different from the Simplex Algorithm where the constraints are the same all along, in the 

active set method, each point will correspond to a different set of constraints shown in Figure. 2, where 

𝑋 and 𝑊 come in pairs. 𝑋∗ is defined as the local minimizer to its corresponding set of active constraints 

and it satisfies the following conditions. 

𝑋∗ is a KKT point 

𝑑𝑖
𝑇𝑃 = 0 for each 𝑖 such that 𝑑𝑖

𝑇𝑋∗ = 𝑓𝑖 

The procedure then generates a sequence of points {𝑋𝑘} and associated working sets 𝑊𝑘 such that 

𝑋𝑘+1 = 𝑋𝑘 + 𝑎𝑘𝑃𝑘 

(
𝐻 𝐴𝑘

𝑇

𝐴𝑘 0
) (

𝑃𝑘

−𝑞𝑘
) = (𝑔𝑘 −  𝐴𝑘

𝑇𝑦𝑘

0
) (9) 

Note that Eq. (9) is also a derivation of the KKT conditions regarding solutions [9]. 

Not until a subspace minimizer is found can a constraint be removed. Therefor, the algorithm 

basically initializes by putting constraints into the working set, and once the first subspace minimizer or 

local minimizer is found, each group will start with a constraint removal and end up with a step to a 
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minimizer. Figure. 2 illustrates this procedure from step 1 to step k, the algorithm identifies the correct 

constraints and then ends up with one extra step, which is k+1, to the final minimizer. 

3.3.  Steepest Descent Method 

The inspiration for this method comes from the obvious notion that if one takes a step towards the 

direction of the negative gradient, a continuous function should initially decrease. Therefore, the only 

problem is to determine how to choose the length of the step [10]. 

𝑓(𝑥 + 𝑣) ≈ 𝑓(𝑥) +  ∇𝑓(𝑥)𝑇 (10) 

This algorithm starts with the Taylor approximation of the function value that is sought to be minimized. 

Now, the question of how to choose the value of 𝑣 so that the directional derivative becomes as small 

as possible is addressed. Provided that ∇𝑓(𝑥)𝑇𝑣 < 0, it is imperative to take 𝑣 as large as possible. 

Define ∆𝑋𝑠𝑑 =  ‖∇𝑓(𝑥)‖∗ ∆𝑋𝑛𝑠𝑑  in which ∆𝑋𝑛𝑠𝑑  is an infinitely small step of the unit norm that 

generates the greatest decrease. 

Then, repeat the following procedures until the optimal feasible solution is achieved. 

Start with a point 𝑋, 

1. Compute ∆𝑋𝑠𝑑 ; 

2. Conduct Line Search in the direction of the steepest descent; 

3. Compute 𝑋 =  𝑋 + 𝑡∆𝑋𝑠𝑑 

4.  Computational Experiment 

The two algorithms above both give a result to the Convex Optimization Problem. However, to solve a 

Convex Programming Problem most efficiently, the CVXOPT package in Python programming is 

extremely useful. With a little modification in its setup, the Smallest Ball Problem can be solved. The 

following is a demonstration of how to use programming methods to an actual example of the Smallest 

Ball Problem. 

To start with, eight points on a 2-D plane are randomly picked as the points we seek to enclose. Using 

a random number generator, the points are as follows, and the goal is to look for the center as well as 

the radius of the smallest enclosing ball. 

[−4,2] 
[−1,1] 

[−1, −2] 
[2,4] 
[2,1] 

[1, −1] 
[1, −4] 

[4,5] 

The CVXOPT package is imported and then the eight different points are entered as the columns of the 

Q matrix. P is the quadratic portion of the convex function and q is the linear modification. G and h are 

representations of the inequality constraints while A and b identify the equality constraints. All of the 

letters mentioned above symbolize matrices and any Convex Programming Problem bears such six 

factors. Referring to the standard setup of the Convex Programming Problem, Q and P would be the 

matrices in Eq. (7) which is the Convex Function and A and b are saying that all the variables add up to 

1, according to Eq. (8). See Appendix for the complete code. 
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Figure 3. Program result. 

As illustrated above in Figure. 3, on the left, the program generates the matrices corresponding to the 

set-up of the problem. On the right, the result is displayed with the middle eight entries being the optimal 

solution 𝑋 and at the bottom, the negative value would be the minimized convex function value. Some 

further calculations are required. Here, the square root of the negative of the minimized function is taken 

to be the radius of the ball. Also, in the solution matrix, all the significantly slow entries will be taken 

as 0, and then the matrix is multiplied by the original Q matrix. Therefore, a 2x1 matrix is obtained and 

that would be the coordinates of the center of the smallest ball. Thus, the program successfully finds the 

Smallest Enclosing Ball of the eight given points in the plane. 

5.  Discussion 

The validity of our solution can be verified by looking for a plane that separates the points that are on 

the ball and the central point of the enclosing ball. This attempt will result in a failure which means there 

is no smaller ball than the current one to find. Also, the center of the ball is within the convex formed 

by the points on the ball. Therefore, it can be concluded that the findings are accurate. 

The two algorithms for solving the Convex Programming problems are largely different, in a way 

that the Active Set Method is purely computational while the Steepest Descent Method approaches the 

problem in a geometric sense. Similarly, they both embody the general mindset of optimization 

algorithms and that is, executing a series of procedures under given conditions until the optimal solution 

is found. For the Smallest Ball Problem, it is usually true that the number count of balls is bigger than 

the number of dimensions. In this case, there are eight points in 2-D. For problems that involve even 

greater dimensions and number of balls, whether the Convex Programming method would still apply 

remains unanswered. 

6.  Conclusion 

Given a reasonable setup, the Convex Programming Problems can be just as easy to solve as a regular 

Linear Programming Problem. For solving a Convex Programming Problem, it’s important to note the 

prerequisites and characterization of the solutions before conducting the algorithm. Also, the problem 

requires slight modification on the KKT conditions to be applicable to finding the smallest ball. 

Examining the original thesis of this paper, Convex programming can be used as a perfect tool to 

solve the Smallest Ball Problem and it implies that Convex Programming is vastly applicable in 

numerous geometric problems as well as other sorts of realms. It can be reasoned that among many 
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possible solutions to the Smallest Ball Problem, Convex Programming holds a special place for its 

adaptability, feasibility, and convenience. This paper is not only to show that Convex Programming can 

be used to solve classical geometric problems but also to demonstrate the potential of Convex 

Programming. The inner workings and algorithms of Convex Programming have been thoroughly 

studied by mathematicians, but its newer applications are yet to be discovered. 
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Appendix 

 
import numpy as np 

import cvxopt 

p1 = [-4,2] 

p2 = [-1,1] 

p3 = [-1,-2] 

p4 = [2,4] 

p5 = [2,1] 

p6 = [1,-1] 

p7 = [1,-4] 

p8 = [4,5] 

Q = np.array([p1,p2,p3,p4,p5,p6,p7,p8]) 

Q = np.ndarray.transpose(Q) 

P = 2 * np.matmul(np.ndarray.transpose(Q),Q) 

q = -np.array([np.dot(p1,p1), 

np.dot(p2,p2),np.dot(p3,p3),np.dot(p4,p4),np.dot(p5,p5), 

               np.dot(p6,p6),np.dot(p7,p7),np.dot(p8,p8)]) 

G = -np.identity(8) 

h = np.zeros(8) 

A = np.ones(8) 

b = np.ones(1) 

print('P =');print(P) 

print('q =');print(q) 

print('G =');print(G) 

print('h =');print(h) 
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print('A =');print(A) 

print('b =');print(b) 

P = cvxopt.matrix(P, tc = 'd') 

q = cvxopt.matrix(q, tc = 'd') 

G = cvxopt.matrix(G, tc = 'd') 

h = cvxopt.matrix(h, tc = 'd') 

A = cvxopt.matrix(A, (1,8), tc = 'd') 

b = cvxopt.matrix(b, tc = 'd') 

sol = cvxopt.solvers.qp(P,q,G,h,A,b) 

print(sol['x']) 

print(sol['primal objective']) 
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