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Abstract. The Bitcoin price was chosen as the research subject, and the observation period was 

set from January 2015 to September 2023. An ARIMA time series model was constructed to 

forecast the trading price. The results indicate that the optimal model for fitting the trading price 

is ARIMA (3, 2, 8). This model takes into account trends, seasonality, and other factors that may 

impact the price of Bitcoin. By analyzing the historical data, the model was able to accurately 

predict the short-term fluctuations in Bitcoin’s trading price. Based on this, short-term 

predictions were made for Bitcoin’s trading price in the next year. Recommendations were then 

provided by combining the forecast results with the economic development situation in the post-

pandemic era. The recommendations suggest that Bitcoin has become a low-quality asset and is 

no longer suitable for diversifying one’s investment portfolio, but rather focus on the 

development of physical industries and adjust one’s investment portfolio in a timely manner. 
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1.  Introduction 

As a cryptocurrency, Bitcoin has attracted wide attention in the financial field. Nakamoto invented 

Bitcoin and expressed it as a decentralized digital currency that uses blockchain technology for 

transaction records and verification [1]. Over time, Bitcoin has become more widely known, and demand 

for Bitcoin has also begun to increase, especially during the pandemic. Rebucci et al. pointed out that to 

drastically reduce the impact of the COVID-19 virus on the economy, central banks and governments 

around the world have introduced loose monetary and fiscal policies [2]. However, under the loose 

monetary and fiscal policies and the pessimism shown in the markets, global capital has sought safe-

haven assets. Zhao et al. have shown that Bitcoin, as an alternative asset for value storage, is also 

increasingly favored by safe-haven funds [3].   

Ciaian et al. pointed out in their research that the high volatility and uncertainty of the Bitcoin market 

provide investors and traders with enormous risks and opportunities [4]. Therefore, the ability to 

accurately predict Bitcoin prices is crucial for individuals and investors. So, if we can accurately predict 

the future price trend of Bitcoin transactions, it will not only help individuals make judgments in advance 

and achieve their diversified investment portfolios; it can also provide investors with short-term market 

direction indicators and issue warnings before turning points as a supplement to investment strategies. 

However, predicting Bitcoin prices is a challenging task. Kristoufek showed that the Bitcoin market 

is influenced by many factors, such as market sentiment, trading volume, and market liquidity [5]. In 

previous studies, many scholars have tried to use various methods to predict Bitcoin prices. For example, 



Karasu used machine learning-based methods, such as SVM technology, to predict Bitcoin prices [6]. 

Kim et al. compared the performance advantages and disadvantages of various prediction methods based 

on deep learning technology [7]. However, these methods may have limitations in dealing with nonlinear 

and non-stationary data. 

This article will use time series prediction methods to predict Bitcoin prices, for the following two 

reasons. On the one hand, the Bitcoin market has some highly similar characteristics to the stock trading 

market, which makes time series analysis more applicable in this market. Bitcoin market trading 

activities are more continuous and uninterrupted, with large numbers of transactions occurring daily. 

This continuity and high frequency of trading causes the Bitcoin market price data to form a continuous 

time series, which contains rich historical information. At the same time, the Bitcoin market has high 

price volatility, which means that prices may change significantly in a short period. The openness and 

transparency of the Bitcoin market, allow market participants to extensively access market data, 

including trading volume, price fluctuations, and market depth. 

On the other hand, time series analysis methods are quite mature and have good performance in 

various fields. A. Ariyo and his research partners used the ARIMA model for stock price prediction, 

proving that the ARIMA model has great short-term predictive potential [8]. Mbachu et al. researched 

house price prediction. They compared the predictive performance of autoregressive integrated moving 

average (ARIMA) models and multiple linear regression (MLR) models. They concluded that ARIMA 

models are generally superior to regression models and more reliable in accurately monitoring and 

predicting housing prices [9]. Kriechbaumer et al. proposed an improved wavelet LET-ARIMA method 

to predict metal prices. This method first decomposes the original price time series using wavelet 

transforms, then establishes ARIMA models for each component time series for prediction, and finally 

adds the predicted results. Empirical results show that compared with the classical ARIMA model, this 

method can significantly improve the prediction accuracy of aluminum, copper, lead, and zinc prices 

[10]. 

In summary, due to the continuity, high frequency of transactions, price volatility, and openness and 

transparency of the Bitcoin market, time series analysis methods may have special applicability in the 

Bitcoin market, which can help everyone reveal price trends and make decisions accordingly. By using 

a large amount of historical Bitcoin price data for model training and validation, this article hopes to 

provide an accurate and reliable method to predict Bitcoin price volatility. 

2.  Methodology 

This section of the article has three objectives. Firstly, it introduces the knowledge of the ARIMA model 

used for time series forecasting. Secondly, it provides a detailed explanation of the modeling process 

and approach using diagrams. Lastly, it discusses the parameter metrics used to assess the effectiveness 

of the predictions. 

2.1.  ARIMA model approach 

The ARIMA (Autoregressive Integrated Moving Average) model is a widely used time series model for 

forecasting future values based on historical data. It was proposed by George E. P. Box and Gwilym M. 

Jenkins in 1976. 

The development of the ARIMA model can be traced back to the earlier work on autoregressive (AR) 

and moving average (MA) models. The AR model, also known as the autoregression model, studies the 

dependence between a variable of interest and its past values. It represents regressing the variable against 

itself. The AR model of order p, denoted as AR(p), considers the dependencies with lagged values up 

to p. The formula expression for AR(p) is: 

𝑦𝑡 = ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + 𝑥 + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝑐 (1) 

Here, 𝑦𝑡  is the stationary variable, ∅𝑖  represents the autocorrelation coefficient at lag i, 𝜀𝑡  is the 

normally distributed white noise with mean zero and variance one, and c is a constant term. 



On the other hand, the MA model, or moving average model, forecasts the variable of interest based 

on past forecast errors. It represents the regression of the variable against the error terms. The MA model 

of order q, denoted as MA(q), considers the dependencies with lagged error terms up to q. The formula 

expression for MA(q) is: 

𝑦𝑡 = 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝑥 + 𝜃𝑝𝜀𝑡−𝑝 + 𝜀𝑡 + 𝜇 (2) 

Here, 𝜃𝑖  represents the moving average coefficient at lag i, 𝜀𝑡  and 𝜀𝑡−𝑖  are the white noise error 

terms, and μ is the mean of the series.  

ARIMA (p, d, q) represents a composite model that incorporates differencing (d), autoregression 

(AR), and moving average (MA). The ARIMA model is a further extension of the ARMA model that 

retains its advantages while overcoming its limitations. It has two main improvements:  

First, handling non-stationary time series data: The ARMA model has limited effectiveness in 

modeling and predicting non-stationary time series. The ARIMA model adds a differencing step to the 

ARMA model, where the original data is differenced to transform the non-stationary time series into a 

stationary one, thus better handling non-stationary data. 

Secondly, seasonality elimination: The ARMA model lacks flexibility in dealing with time series 

data with trends and seasonality. The ARIMA model introduces seasonal differencing to remove the 

seasonal effects from the data, resulting in more accurate modeling and prediction of time series with 

seasonality. 

In summary, the ARMA model addresses the limitations of the AR and MA models, while the 

ARIMA model further extends the capabilities of the ARMA model by handling non-stationary data and 

eliminating seasonality. The ARIMA model retains the flexibility and predictive accuracy of the ARMA 

model, making it a valuable tool in time series analysis and forecasting. 

When using the ARIMA model, it is important to preprocess the data by applying differencing to 

stabilize the mean and eliminate trends. If the data exhibits seasonality, seasonal differencing can be 

applied. The ARIMA model’s formula expression is:  

𝑦𝑡 = ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑝𝜀𝑡−𝑝 + 𝜀𝑡 + 𝑐 (3) 

Here, 𝑦𝑡  represents the differenced time series. The model parameters (∅𝑖  and 𝜃𝑖 ) are estimated 

based on the data, and the white noise assumption is used for the error terms (𝜀𝑡). 

2.2.  Verify accuracy 

Due to the fact that data forecasting involves predicting future data based on historical data changes, it 

is impossible for anyone to accurately predict data and guarantee the absolute accuracy of the results. 

This means that we need to consider the level of error present in the forecasts. The most important 

criterion for measuring forecast accuracy is prediction error. Therefore, in this paper, we will use Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) 

to evaluate the forecast accuracy of different ARIMA models. The formulas for calculating MAE, 

MAPE, and RMSE are listed in the table below. In the formulas, 𝑦𝑡 represents the actual values, y ̂t 

represents the predicted values, and n represents the number of forecast periods. By analyzing the 

prediction errors, we can select the ARIMA model with the smallest prediction error, thereby 

determining the best-fitting model. 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) = ∑ |
𝑦𝑡 − �̂�𝑡

𝑛
|

𝑛

𝑡=1

(4) 
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𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √
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3.  Results and discussion 

3.1.  Data sources and analysis environment 

First, the selected Bitcoin data consists of 3,171 daily adjusted closing prices from January 1, 2015, to 

September 6, 2023, sourced from Kaggle. Secondly, all empirical analyses in this paper were conducted 

using RStudio software.  

3.2.  Descriptive statistical analysis 

Before conducting the analysis, descriptive statistical analysis was performed on the daily closing prices 

of Bitcoin in this study. The first step was data preprocessing. By calling the summary function, can 

prove that the data is very clean. The next step was to convert the Bitcoin closing price data into a time 

series. Figure 1 shows the time series plot of the Bitcoin closing prices. It can be visually observed from 

the plot that there is a trend and seasonality. To avoid subjective errors, the “stl” function was used in 

RStudio to decompose the time series into seasonal, trend, and irregular components to determine the 

stationarity of the time series. As shown in Figure 2, the time series exhibits strong seasonality and a 

significant downward trend after 2017. 

 

Figure 1. Time series chart of Bitcoin’s adjusted closing price. 

 

Figure 2. Decompose the time series 



3.3.  Data processing 

Next, the original time series was subjected to first-order differencing to obtain the first-differenced time 

series plot (as shown in Figure 3). Subsequently, the Augmented Dickey-Fuller (ADF) test was 

performed, and the results are presented in Table 1. 

From Figure 3, it can be observed that the first-differenced time series exhibits randomness in the 

temporal dimension, without any noticeable trend or periodicity. Table 1 shows that the p-value of the 

ADF test is less than 0.01, which is below the significance level of 0.05. The p-value in the KPSS test 

is 0.1, which is greater than 0.05, so the time series is stationary. This suggests that the first-order 

differencing has been effective in eliminating the non-stationarity of the original series. 

Based on the comprehensive analysis above, it can be concluded that the first-order differencing has 

achieved the desired effect. Consequently, further analysis can be conducted. 

 

Figure 3. Second-order differential time series. 

Table 1. ADF test results for first-order differences 

Method P-Value 

Dicky-Fuller 0.01 

KPSS 0.1 

3.4.  Model recognition and fitting    

Using first-order difference sequences, autocorrelation and partial autocorrelation tests were conducted 

to determine the order of the model. The results of the ACF and PACF analyses are presented in Figure 

4 and 5, respectively. The ACF displays the correlation between each observation and its lagged values, 

while the PACF represents the correlation between an observation and its lagged values, excluding the 

influence of intermediate lags. These visualizations aid in determining the number of significant lags to 

include in the model. Furthermore, the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) were employed to select among the different models. These criteria balance the 

goodness of fit with the complexity of the model. By comparing the AIC and BIC values for the 18 

models under consideration, the model with the order (3,2,8) was ultimately chosen. This result provides 

important evidence for subsequent model fitting. 



 

Figure 4. ACF Plot 

 

Figure 5. PACF Plot 

By invoking the summary function, specific numerical values for each parameter can be obtained. 

The forecasting equation for ARIMA(3,2,8) is as follows: 

𝑦𝑡 = −0.506𝑦𝑡−1 − 0.769𝑦𝑡−2 − 0.352𝑦𝑡−3 − 1.5𝜀𝑡−1 + 0.74𝜀𝑡−2 − 0.586𝜀𝑡−3 − 0.03𝜀𝑡−4 + 

0.31𝜀𝑡−5 + 0.037𝜀𝑡−6 − 0.2𝜀𝑡−7 + 0.14𝜀𝑡−8 + 907636 (7) 

3.5.  Model evaluation and diagnostic checking    

The data from the test set was predicted using the ARIMA(3,2,8) model. After computation, the 

percentage error between the predicted data and the test data in the test set is only -0.002044555, 

indicating a high level of accuracy. Furthermore, the metrics MAE=409.5839, MAPE=376.2171, and 

RMSE=826.881 also demonstrate the excellent performance of the ARIMA(3,2,8) model. This further 

confirms that the model can be used to forecast the trading price of Bitcoin (Figure 6). 



 

Figure 6. Performance verification 

3.6.  Predicting the future 

Using data from ARIMA (3, 2, 8), predict the 2023/10-2024/December trading price. As shown in 

Figure 7, the predicted value and 95% confidence interval are indicated. 

 

Figure 7. Bitcoin Price Prediction 

4.  Conclusion 

This paper analyzes the prediction problem of the adjusted trading price of Bitcoin using the ARIMA 

model. The original series of the adjusted Bitcoin trading price exhibited non-stationarity, but after 

second-order differencing, the trend was eliminated and stationarity was achieved. The differenced 

stationary series was tested for pure randomness and found to be non-white noise, indicating that the 

model has statistical significance. Based on the principle of minimizing the Bayesian information 

criterion (BIC) and the Akaike information criterion (AIC), as well as the significance tests, the optimal 

fitting model was determined to be ARIMA(3, 2, 8). Performance tests demonstrated that ARIMA(3, 2, 

8) exhibits excellent statistical performance. Such research fills a gap in using time series models to 

predict and analyze the price trends of Bitcoin in 2023. This paper provides guidance for those who are 

hesitant about the Bitcoin market after the epidemic. 

Based on the ARIMA model, this paper successfully predicts the adjusted trading price of Bitcoin 

from October 2023 to October 2024. It can be understood that Bitcoin has completely lost its potential 

for appreciation. Despite being considered a high-quality safe-haven asset during the pandemic, this 



paper is pessimistic about the future prospects of Bitcoin. At least until the next mining boom, Bitcoin 

has become a low-quality asset and is no longer suitable for diversifying one’s investment portfolio. 

Therefore, the recommendation given in this paper is to reduce investments in Bitcoin. With the end 

of the global pandemic, the recovery of global physical industries becomes an inevitable outcome. It is 

advised not to increase holdings of Bitcoin in the future, but rather focus on the development of physical 

industries and adjust one’s investment portfolio in a timely manner. 

References 

[1] Ariyo A A, et al. 2014 Stock Price Prediction Using the ARIMA Model. 2014 UK Sim-AMSS 

16th International Conference on Computer Modelling and Simulation.  

[2] Ciaian P, et al. 2015 The economics of BitCoin price formation. Applied Economics, 48(19), 

1799–1815.  

[3] Ji S, Kim J and Im H 2019 A Comparative Study of Bitcoin Price Prediction Using Deep Learning. 

Mathematics, 7(10), 898.  

[4] Karasu S, et al. 2018 Prediction of Bitcoin prices with machine learning methods using time series 

data. 2018 26th Signal Processing and Communications Applications Conference (SIU).  

[5] Kriechbaumer T, et al. 2014 An improved wavelet–ARIMA approach for forecasting metal prices. 

Resources Policy, 39, 32–41. 

[6] Kristoufek L 2015 What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet 

Coherence Analysis. PLOS ONE, 10(4).  

[7] Nakamoto S 2008 Bitcoin: A Peer-to-Peer Electronic Cash System. Assets Pub. 

[8] Rebucci A, et al. 2022 An Event Study of COVID-19 Central Bank Quantitative Easing in 

Advanced and Emerging Economies. Essays in Honor of M. Hashem Pesaran: Prediction and 

Macro Modeling, Advances in Econometrics, 43, 291–322.  

[9] Zhao L, Mbachu J and Liu Z 2019 Exploring the Trend of New Zealand Housing Prices to Support 

Sustainable Development. Sustainability, 11(9), 2482.  

[10] Zhao Y, et al. 2023 The effects of quantitative easing on Bitcoin prices. Finance Research Letters, 

57, 104232.  


