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Abstract. Classical and Quantum mechanics are the two milestones of physics and 
mathematics. The path integral describes the generalised form of action from classical to 
quantum mechanics. This paper has reviewed some fundamental concepts and results in 
classical dynamics and quantum mechanics. The research method of the whole project is 
mainly theoretical derivations of applied mathematics and mathematical physics. This paper 
provides different perspectives to investigate the applications of path integrals. This paper also 
builds a connection between path integrals and the Unruh temperature. 
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1.  Introduction 
Quantum mechanics is normally introduced and formulated by the Schrödinger equation involving 
Hamiltonian operators. The quantum counterpart of the classical Hamiltonian is the operator. Feynman 
developed another formulation of quantum mechanics based on the Lagrangian based on Dirac's work 
[1]. Here one considers the phase with 

 exp �𝑖𝑖
ℏ
𝑆𝑆� = exp �𝑖𝑖

ℏ ∫  𝑡𝑡2
𝑡𝑡1

 𝐿𝐿𝐿𝐿𝐿𝐿� (1) 

where 𝐿𝐿1 and 𝐿𝐿2 are initial and final time. And all possible paths are summed over with fixed initial 
and final boundary conditions. This path (or 'sum') can be thought as a 'kernel' which is also an answer 
to the Schrödinger's equation. 

Usually, the path integral approach is not as effective as applying the Schrödinger equation directly. 
However, it is particularly suitable for relativistic problems to use path integrals. This is because a 
Hamiltonian treatment singles out time whereas space and time can be treated on an equal footing 
through a Lagrangian. Relativistic quantum field theories have also proved that path integrals is useful 
in that study. A fascinating route is given in the Bailin and Love’s book [2], which begins with the 
Gaussian integral 

 ∫  ∞
−∞ dyexp �− 1

2
ay2� = (2π)1/2a−1/2, (2) 

and develops in order the theory of quantum field theory and path integrals. 
This paper has studied the path integrals from the derivations towards the applications [1, 3]. First, 

the path integral formulation will be introduced in non-relativistic quantum mechanics. Readers will 
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try to study it in a basic application, which is simple harmonic oscillator. Readers will also understand 
in detail some other applications of the path integrals with relativistic problems, such as the 
accelerating detector and the detector in heat bath. Furthermore, readers will study the connection with 
a few interesting predictions, for example, the Unruh temperature. 

2.  Path integrals in quantum mechanics 

2.1.  Hamiltonian and lagrangian formulation 
Schrödinger developed a formulation in terms of the wave functions paralleled to Heisenberg's 
formulation of quantum mechanics[4]. He was also inspired by de Broglie’s and Einstein's ideas of 
matter waves and wave-particle duality. In mathematical form, the Schrödinger equation is formulated 
as [3] 

 Hψ = iℏ ∂ψ
∂t

, (3) 

where 𝐻𝐻 is the Hamiltonian, 𝜓𝜓is the wave function, the reduced Planck constant is ℏ = ℎ/(2𝜋𝜋) 
and ℎ ≈ 6.626 × 10−34𝐽𝐽𝐽𝐽 is the Planck constant. The Hamiltonian is defined as the total mechanical 
energy of the system and is always in the form of 

 H(x, p, t) = T + V = p2

2m
+ V(x, t), (4) 

where L is the Lagrangian, T and V are the kinetic and the potential energy. 
The Lagrangian of a dynamical system is a function which describes the state of the whole 

dynamical system. It is given in equations as 

 L(x, ẋ, t) = T − V = 1
2

mẋ2 − V(x, t). (5) 

In classical mechanics[5], when considering a particle (of mass m) moving with respect to a 
conservation force, the force gives 

 F(xi, t) = −∇V(xi, t) (6) 

we have the equation in one dimension 

 F(x, t) = −∂V(x,t)
∂x

. (7) 

From Newton's 2nd law 

 F = mẍ, (8) 

the relation is rewritten as 

 −∂V(x,t)
∂x

= mẍ = d
dt
�∂T
∂ẋ
�. (9) 

Because Tand V are independent of x and ẋ respectively in the Lagrangian, the equation can be 
written as 

 d
dt
�∂L
∂ẋ
� = ∂L

∂x
, (10) 

this is also called an Euler-Lagrangian equation. 
Moreover, the action S is always defined as an integral between two particularly fixed events x1(t) 

and x2(t) linkd by the path x(t), which can be written as 

 𝑆𝑆 = ∫  𝑡𝑡2
𝑡𝑡1

𝐿𝐿(𝑥𝑥, �̇�𝑥, 𝐿𝐿)𝐿𝐿𝐿𝐿. (11) 
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2.2.  The path integral 
The Hamilton's principle describes that the line integral (or called the time-evolution) of a system from 
𝐿𝐿1 to 𝐿𝐿2 is the action integral 

 𝑆𝑆 = ∫  𝑡𝑡2
𝑡𝑡1

𝐿𝐿𝐿𝐿𝐿𝐿 (12) 

which is stationary regardless of different coordinates. 
When studying a moving particle from position 𝑎𝑎 to 𝑏𝑏, there are many possible paths. Each path 

has action 𝑆𝑆[𝑥𝑥(𝐿𝐿)]. The square brackets also mean that 𝑆𝑆 is a functional of 𝑥𝑥. The phase is considered 
in Feynman and Hibbs's book [1] 

 exp �𝑖𝑖
ℏ
𝑆𝑆� = exp �𝑖𝑖

ℏ ∫  𝑡𝑡2
𝑡𝑡1

 𝐿𝐿𝐿𝐿𝐿𝐿� (13) 

which is also considered as a contribution from a particular path to the propagator. All possible 
trajectories can be then summed over with fixed boundary values and conditions [6]. The sum can also 
be formally written as 

 𝐾𝐾 = ∫  𝑏𝑏𝑎𝑎 exp �𝑖𝑖
ℏ
𝑆𝑆�𝐷𝐷𝑥𝑥(𝐿𝐿) (14) 

which is called a path integral. In the path integral, there can be some smooth functions [7]. In the 
next part, an example of the path integrals is given to study the application of  how it can be used. 

2.3.  Application: the simple harmonic oscillator 
In this model, some conditions should be defined at the start. The initial and final time can be defined 
respectively. And it is easier to set 𝐿𝐿1 = 0 and 𝐿𝐿2 = 𝑇𝑇, where 𝑇𝑇 is also the time interval between the 
two events. The position function of the particle is 

 𝑥𝑥 = 𝑥𝑥𝑖𝑖 + �𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖�
𝑇𝑇

𝐿𝐿 + ∑  ∞
𝑛𝑛=1 𝑏𝑏𝑛𝑛sin �𝜋𝜋𝑛𝑛𝑡𝑡

𝑇𝑇
� (15) 

where 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑓𝑓  is defined to represent the initial and the final positions, and 𝑏𝑏𝑛𝑛  is fixed to 
determine the trajectories (paths). The action of the particle is now 

 𝑆𝑆 = ∫  𝑇𝑇0 �1
2
𝑚𝑚�̇�𝑥2 − 1

2
𝑚𝑚𝜔𝜔2𝑥𝑥2�𝐿𝐿𝐿𝐿, (16)  

and in the square bracket it is the Lagrangian. In the process of evaluating the exponential term for 
this path integral, the difficult step is to calculate the integral 

 ∫  𝑇𝑇0 𝑥𝑥2𝐿𝐿𝐿𝐿 (17) 

where 

 
𝑥𝑥2 = 𝑥𝑥𝑖𝑖2 + �𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖�

2

𝑇𝑇2
𝐿𝐿2 + ∑  ∞

𝑛𝑛=1  𝑏𝑏𝑛𝑛2sin2 �𝜋𝜋𝑛𝑛𝑡𝑡
𝑇𝑇
�+

2 �𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖
𝑇𝑇

𝐿𝐿� ∑  ∞
𝑛𝑛=1  𝑏𝑏𝑛𝑛sin �𝜋𝜋𝑛𝑛𝑡𝑡

𝑇𝑇
�+ 2𝑥𝑥𝑖𝑖

�𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖�
𝑇𝑇

𝐿𝐿 + 𝑜𝑜,
 (18) 

And the action after simplification is 

 
𝑆𝑆 = 1

2
𝑚𝑚 �𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖�

2

𝑇𝑇
+ 𝑚𝑚∑  ∞

𝑛𝑛=1  
𝑏𝑏𝑛𝑛2𝜋𝜋2𝑛𝑛2

4𝑇𝑇

 −1
2
𝑚𝑚𝜔𝜔2 �𝑇𝑇

�𝑥𝑥𝑓𝑓
2+𝑥𝑥𝑖𝑖

2+𝑥𝑥𝑖𝑖𝑥𝑥𝑓𝑓�

3
+ ∑  ∞

𝑛𝑛=1  �
𝑇𝑇
2
𝑏𝑏𝑛𝑛2 + 𝑇𝑇

𝑛𝑛𝜋𝜋
�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑓𝑓(−1)𝑛𝑛�𝑏𝑏𝑛𝑛��

 (19) 

In this case, the integral can be rewritten as 
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 ∫  ∞
−∞ ∏  ∞

𝑖𝑖=1 𝐿𝐿𝑏𝑏𝑛𝑛𝑒𝑒
𝑖𝑖
ℏ𝑆𝑆, (20) 

and the exponential term is given by 

 exp �𝑖𝑖
ℏ
𝑆𝑆� = exp �𝑖𝑖

ℏ
�𝑚𝑚�𝑥𝑥𝑓𝑓−𝑥𝑥𝑖𝑖�

2

2𝑇𝑇
+ 1

6
𝑚𝑚𝜔𝜔2𝑇𝑇�𝑥𝑥𝑓𝑓2 + 𝑥𝑥𝑖𝑖2 + 𝑥𝑥𝑖𝑖𝑥𝑥𝑓𝑓��� 

 × ∏  ∞
𝑛𝑛=1  exp �𝑖𝑖

ℏ
�𝑏𝑏𝑛𝑛2 �

𝑚𝑚𝜋𝜋2𝑛𝑛2

4𝑇𝑇
− 𝑇𝑇𝑚𝑚𝜔𝜔2

4
� − 1

2
𝑏𝑏𝑛𝑛𝑚𝑚𝜔𝜔2 𝑇𝑇

𝑛𝑛𝜋𝜋
�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑓𝑓(−1)𝑛𝑛���. (21) 

Readers should noticed that this is the Gaussian integral formula with imaginary instead of  real 
coefficients. Hence, the formula for the integral is rewritten as 

 ∫  ∞
−∞ 𝑒𝑒

𝑖𝑖𝑎𝑎𝑥𝑥2+𝑖𝑖𝑏𝑏𝑥𝑥𝐿𝐿𝑥𝑥 = �𝜋𝜋𝑖𝑖
𝑎𝑎
𝑒𝑒−

𝑖𝑖𝑏𝑏2

4𝑎𝑎 , (22) 

where a, b ∈ C. And the coefficients are 

 𝑎𝑎 = 1
ℏ
�𝑚𝑚𝜋𝜋2𝑛𝑛2

4𝑇𝑇
− 𝑇𝑇𝑚𝑚𝜔𝜔2

4
� (23) 

and 

 𝑏𝑏 = −1
ℏ
1
2
𝑚𝑚𝜔𝜔2 𝑇𝑇

𝑛𝑛𝜋𝜋
�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑓𝑓(−1)𝑛𝑛�. (24) 

Hence, the path integral is solved for the simple harmonic oscillator. 

3.  Relativistic quantum mechanics 

3.1.  Klein-gordon equation 
The Lagrangian of the form 𝐿𝐿 = 𝑇𝑇 − 𝑉𝑉 can describe conservative forces. For a free particle in the 
relativistic form, the motion of moving particle in one dimension form is formulated by the 
Lagrangian [8] 

 𝐿𝐿 = −𝑚𝑚𝑐𝑐2�1− 𝑣𝑣2

𝑐𝑐2
. (25) 

In mathematics, Lagrangian under the Legendre transform can generate Hamiltonian. Hence, the 
relativistic Hamiltonian can be obtained 

 𝐻𝐻 = �𝑚𝑚2𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2. (26) 

The relativistic wave equation can be derived by the method for the non-relativistic free particle 
wave equation 

 √𝑚𝑚2𝑐𝑐4 − 𝑐𝑐2ℏ2∇2𝜓𝜓 = 𝑖𝑖ℏ ∂𝜓𝜓
∂𝑡𝑡

, (27) 

where the RHS can be also represented by 

 𝐸𝐸 ⟶ +𝑖𝑖ℏ ∂
∂𝑡𝑡

. (28) 

Now, introduce the four-momentum, 

 𝑝𝑝 = �𝐸𝐸
𝑐𝑐

,𝐩𝐩�, (29) 

Where p is the linear momenta of the particle. The important step is to square the energy term in 
(28), which gives 

 𝐸𝐸2 ⟶ −ℏ2 ∂2

∂𝑡𝑡2
 (30) 
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and it is also true for 

 𝐸𝐸2 = 𝑚𝑚2𝑐𝑐4 − ℏ2𝑐𝑐2∇2 (31) 

Then the differential equation is linearised. Hence, the relativistic wave equation can now be 
written as 

 (𝑚𝑚2𝑐𝑐2 − ℏ2∇2)𝜓𝜓 = −ℏ2

𝑐𝑐2
∂2𝜓𝜓
∂𝑡𝑡2

, (32) 

or without the bracket 

 1
𝑐𝑐2

∂2𝜓𝜓
∂𝑡𝑡2

− ∇2𝜓𝜓 + 𝑚𝑚2𝑐𝑐2

ℏ2
𝜓𝜓 = 0 (33) 

Moreover, a new four-dimensional Laplacian can be introduced, which is 

 □ = ∂𝜇𝜇 ∂𝜇𝜇 = 1
𝑐𝑐2

∂2

∂𝑡𝑡2
− ∇2 (34) 

Hence, the equation can be simplified as 

 𝜓𝜓 + 𝑚𝑚2𝑐𝑐2

ℏ2
𝜓𝜓 = 0, (35) 

which is a form of the Klein-Gordon Equation. Also, there is another derivation in geophysical 
fluid mechanics towards the Klein-Gordon Equation [9]. There are some further applications and 
discussions of the Klein-Gordon Equation. The superseded version of the Klein-Gordon equation can 
be derived. Paul Dirac discovered the Dirac equation in 1928 and expanded the solutions to the higher 
dimensions [10]. 

3.2.  Euler-lagrangian field equation 
This subsection is aimed to give a taster in field theory and link it with path integrals. Now 
considering the Klein-Gordon equations, with Planck units 

 𝜓𝜓 + 𝑚𝑚2𝜓𝜓 = 0. (36) 

Recall that the formula of action is  

 𝑆𝑆 = ∫  𝐿𝐿𝐿𝐿𝐿𝐿 (37) 

where 

 𝐿𝐿 = 𝐿𝐿(𝑞𝑞, �̇�𝑞, 𝐿𝐿) (38) 

Also, another formula given in Landau and Lifshitz's book[8] is  

 ℒ = 1
2
�∂𝜇𝜇𝜙𝜙�

2 − 1
2
𝑚𝑚2𝜙𝜙 (39) 

where ℒ is the Lagrangian density and ϕ is the classical scalar field. Hence in the field theory 
version, the action becomes 

 𝑆𝑆 = ∫  ℒ𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥𝐿𝐿𝑑𝑑𝐿𝐿𝑑𝑑 (40) 

where 

 ℒ = ℒ�𝜙𝜙, ∂𝜇𝜇𝜙𝜙, 𝑥𝑥𝜇𝜇� (41) 

Applying the Euler-Lagrangian equation, the Euler-Lagrangian field equation is 

 ∂𝜇𝜇 �
∂ℒ

∂�∂𝜇𝜇𝜙𝜙�
� − ∂ℒ

∂𝜙𝜙
= 0 (42) 

where 
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 ∂ℒ
∂𝜙𝜙

= −𝑚𝑚2𝜙𝜙, (43) 

and 

 ∂ℒ
∂�∂𝜇𝜇𝜙𝜙�

= ∂𝜇𝜇𝜙𝜙. (44) 

Finally, the integral is rewritten as 

 ∫  𝐷𝐷𝜙𝜙𝑒𝑒
𝑖𝑖
ℏ𝑆𝑆. (45) 

Furthermore, the example can be expanded to 1+1 dimension, the Lagrangian density can be 
rewritten as 

 ℒ = 1
2

(∂0𝜙𝜙)2 − 1
2

(∂1𝜙𝜙)2 − 1
2
𝑚𝑚2𝜙𝜙2 (46) 

4.  Application: unruh effect and the detector models 

4.1.  Unruh temperature 
The Unruh effect is that the blackbody radiation can be observed by an accelerating observer, but 
cannot be observed by an inertial observer[11]. In other words, a non-zero temperature without other 
temperature sources can still be measured by a thermometer on an accelerating observer. 

William Unruh derived the Unruh temperature in 1976 [12], and it is the temperature experienced 
by an accelerating observer in the vacuum field. The Unruh temperature is defined as 

 𝑇𝑇 = ℏ𝑎𝑎
2𝜋𝜋𝑐𝑐𝑘𝑘𝐵𝐵

, (47) 

where a  is acceleration, c  is the speed of light in the vacuum field, and kB ≈ 1.38 ×
10−23 m2kgs−2 K−1 is called the Boltzmann constant. This is also worthy to mention that Stephen 
Hawking derived the Hawking temperature in 1974[13] has the same value and representation as the 
Unruh temperature. 

4.2.  Detector models 
S.W.Hawking and Werner Israel's book [14]gave me motivation for the following part of the project. 
The key assumption is that‘Can temperature be generated the acceleration?’ In this work, the exact 
propagator were avoided from being computed to ease the calculation. It will be also easier to use 
Planck units, consider the Lagrangian 

 𝐿𝐿 = 1
2
𝑚𝑚�̇�𝑥2 − 𝑉𝑉(𝑥𝑥) + 𝑥𝑥𝑥𝑥(𝐿𝐿), (48) 

Where j(t) is the source term. The source term j(t) can also be understood as the driving force and 
it is a function of time t. Mathematicians and physicists always understand the detector model using 
the source term in the path integrals. Hence, the Euler-Lagrangian equation becomes 

 𝑑𝑑
𝑑𝑑𝑡𝑡

(𝑚𝑚�̇�𝑥) = 𝑉𝑉′(𝑥𝑥) − 𝑥𝑥(𝐿𝐿). (49) 

In section 3, the Lagrangian density was introduced. Then, using the same method in D.Bailin and 
A.Love's book [2], the path integral to the model can be rewritten as 

 ∫  𝐷𝐷𝜙𝜙𝑒𝑒𝑖𝑖𝑆𝑆(𝜙𝜙)+𝑖𝑖 ∫  𝑗𝑗(𝑥𝑥)𝜙𝜙(𝑥𝑥), (50) 

where the source term j(x) is 

 𝑥𝑥(𝑥𝑥) = ∫  𝐿𝐿𝑑𝑑𝑑𝑑(𝑑𝑑)𝛿𝛿4(𝑥𝑥 − 𝑥𝑥(𝑑𝑑)) (51) 
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In the following parts, different performances of the models will be introduced in order to study the 
link between the path integrals and the Unruh effect. 

4.2.1.  Accelerating detector. Firstly, the trivial model is thhe stationary detector under zero 
temperature. And the coordinates in the four-vector are respectively 

 𝑥𝑥0(𝑑𝑑) = 𝑑𝑑 (52) 

 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0. (53) 

For the rest of this subsection, the accelerating detector is taken into account at zero temperature. 
Introduced in D.Bailin and A.Love's book [2], the functional W is 

 𝑊𝑊 = ∫  ∞
−∞ 𝐿𝐿𝑑𝑑 ∫  ∞∞ 𝐿𝐿𝑑𝑑′𝑑𝑑(𝑑𝑑)𝑑𝑑(𝑑𝑑′)𝑓𝑓(𝑑𝑑 − 𝑑𝑑′) (54) 

where the path integral f is 

 𝑓𝑓(𝑑𝑑) = ∫  𝑑𝑑4𝑘𝑘
(2𝜋𝜋)4

𝑒𝑒−𝑖𝑖𝑘𝑘
0𝜏𝜏

(𝑘𝑘0)2−𝐤𝐤2+𝑖𝑖𝑖𝑖−𝑚𝑚2 (55) 

Here the error is fixed by ϵ term and the integral is now well defined. 
In J.R. Anglin's article [15], the trajectory of the detector is considered by 

 

 𝑥𝑥0 = 1
𝑎𝑎

sinh (𝑎𝑎𝑑𝑑)

 𝑥𝑥1 = 1
𝑎𝑎

cosh (𝑎𝑎𝑑𝑑)
 𝑥𝑥2 = 0
 𝑥𝑥3 = 0

 (56) 

In the four-vector form, and the scalar product is that 

 p2 = (𝑝𝑝0)2 − (𝑝𝑝1)2 − (𝑝𝑝2)2 − (𝑝𝑝3)2, (57) 

and 

 k ⋅ x = 𝑘𝑘0𝑥𝑥0 − 𝑘𝑘1𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 − 𝑘𝑘3𝑥𝑥3. (58) 

So in the path integral, the exponential term can be written as 

 𝑒𝑒−𝑖𝑖𝑘𝑘0�𝑥𝑥0−𝑥𝑥0′�+𝑖𝑖𝑘𝑘1�𝑥𝑥1−𝑥𝑥1′�. (59) 

From the result in Anglin's paper[15], the detector's trajectory can be written as 

 
𝑥𝑥0 = 1

𝑎𝑎
�sinh (𝑎𝑎𝑑𝑑) − sinh (𝑎𝑎𝑑𝑑′)�  

𝑥𝑥1 = 1
𝑎𝑎
�cosh (𝑎𝑎𝑑𝑑) − cosh (𝑎𝑎𝑑𝑑′)�  

 (60) 

Now operate the four-vector formula to calculate x, which is 

 (𝑥𝑥0)2 − (𝑥𝑥1)2 = − 2
𝑎𝑎2

+ 2
𝑎𝑎2

cosh �𝑎𝑎(𝑑𝑑 − 𝑑𝑑′)� (61) 

Then we have 

 (𝑥𝑥0)2 − (𝑥𝑥1)2 = 4
𝑎𝑎2

sinh2 �1
2
𝑎𝑎(𝑑𝑑 − 𝑑𝑑′)�. (62) 

Then the Lorentz invariance becomes 

 𝑑𝑑 − 𝑑𝑑′ ⟶ 2
𝑎𝑎

sinh �1
2
𝑎𝑎(𝑑𝑑 − 𝑑𝑑′)�. (63) 

τ − τ′ = 0 is for the stationary model and for the accelerating model τ − τ′ becomes 
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 (𝑑𝑑 − 𝑑𝑑′)2 ⟶ 4
𝑎𝑎2

sinh2 �1
2
𝑎𝑎(𝑑𝑑 − 𝑑𝑑′)�. (64) 

The hyperbolic term has the property 

 𝑑𝑑 ⟶ 𝑑𝑑 + 4𝜋𝜋
𝑎𝑎
𝑖𝑖, (65) 

which means that the period for the hyperbolic term is (4π)/a, and remember that when this term 
is squared the negative sign is taken away. Thus, the period for the whole trajectory is 

 𝑑𝑑 ⟶ 𝑑𝑑 + 2𝜋𝜋
𝑎𝑎
𝑖𝑖. (66) 

And the value of the period is exactly the same as inverse value of Unruh temperature a/(2π) with 
Planck units. 

4.2.2.  Detector in heat bath. When studying the model under zero temperature, the fraction in (55) is 

 𝑖𝑖
(𝑘𝑘0)2−𝜇𝜇2+𝑖𝑖𝑖𝑖

 (67) 

where μ2 = k2 + m2. This representation can also be expanded in a finite temperature in a heat 
bath. With this idea in Ashok Das's paper [16], the fraction term is rewritten as 

 𝑖𝑖
(𝑘𝑘0)2−𝜇𝜇2+𝑖𝑖𝑖𝑖

𝑒𝑒𝛽𝛽�𝑘𝑘
0�

𝑒𝑒𝛽𝛽�𝑘𝑘0�+1
+ 𝑖𝑖

(𝑘𝑘0)2−𝜇𝜇2−𝑖𝑖𝑖𝑖
1

𝑒𝑒𝛽𝛽�𝑘𝑘0�+1
, (68) 

where β = 1/(kBT)  is inversely proportional to the temperature (consider the conservation of 
dimensions and note that kBT is in the unit of energy). When β tends to infinity the temperature tends 
to 0, which proves that the model can also become the same form as it in the zero temperature 
conditions. Alternative approach can be using power series. 

Anglin claims in his article[15] that the effect and contribution of the heat bath under the 
temperature kT = ℏa

2πc
 is the same as the effect of an accelerating detector in the scalar vacuum field. 

5.  Conclusion 
This paper has seen an overview of the path integral. From this paper, we can make a useful 
connection between temperature and acceleration using path integrals, especially in the Unruh effect. 

At the end of section 2, the solution and the coefficients can be simplified using some other 
methods. The author tried to reach the same result as Anglin's for the path integrals under the heat bath 
[15], but the calculation is interrupted when I meet the quarter circle in the contour integral for the 𝑘𝑘0 
term. Other creative methods could be to use the Bessel function as Anglin. 

There are some possible applications that might be related to this paper. For example, the Buchdahl 
limit is a nice discussion in the area between path integrals and thermodynamics [17]. I will be more 
interested in studying in this branch in the future. 
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