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Abstract. In this work, we investigated the phenomenon of spontaneous bidirectional sliding on 

a toppling rod under a frictional situation. We explained the reasons for sliding is the friction 

force from the table is not sufficient to support the horizontal acceleration of the mass center 

when toppling, so the rod itself has to obtain a horizontal acceleration and apply the inertia force 

to play the role of supporting the acceleration of the mass center. This phenomenon and converted 

the question into a mathematical model. We pick the contacting point between the rod and the 

horizontal surface as the reference point for our computing of physical quantity, therefore the 

torque caused by friction and normal force can be ignored. With this model, we finished the 

theoretical analysis of the effects of varying static friction and dynamic friction coefficients on 

the phenomenon, with computer simulations verified. 

Keywords: classical mechanics, rotation, rigid body, friction, mathematical modeling. 

1.  Introduction 

The circumstance of the problem in daily life is simple: A ruler stands on the table and then sets free 

with a small angle between the vertical direction, the ruler starts to topple with a horizontal displacement: 

First goes backward, and then moves forward. As shown in the figure below: 

 

Figure 1.  A ruler stands on the table and then sets free with a small angle between the vertical direction, 

the ruler starts to topple with a horizontal displacement. 
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One crucial conclusion from observation is that this phenomenon is closely related to the coefficients 

of friction. If you put the ruler on a flat, smooth table and release it, you are likely to see both backward 

and forward movements. Whereas if you put the ruler on a piece of wet tissue and repeat the experiment, 

you probably only find forward sliding exists. The contrast between the two experiments leads to our 

conclusion. 

In this work, we will figure out how the coefficients of friction relate to the existence of forward and 

backward sliding. We mainly complete the computation by classical mechanics with computer 

simulation. The theoretical methods are abandoned since Lagrangian or Hamilton mechanics are not 

suitable for non-holonomic constraints[1] including friction which is the key to this problem. 

In some texts, the same question under a frictionless situation was examined, but it turns out that 

under a frictional environment, the evaluation can be even more sophisticated. In the next section, we 

will briefly talk about the reason for sliding. And in section 3 we will finish some theoretical analyses 

and put our primary focus on the stationary stage because of the complexity of handling dynamic motion 

manually. And the simulations, including both the static stage and dynamic stage, will be presented in 

Section 4. 

2.  Reason of sliding 

Before we start theoretical analysis, we explain the reason for sliding. The essential cause of sliding is 

the friction force from the table is not sufficient to support the horizontal acceleration of the mass center 

when toppling, so the rod itself has to obtain a horizontal acceleration and apply the inertia force to play 

the role of supporting the acceleration of the mass center. 

Another reason is that the rod under our consideration is a rigid body [2], which is also regarded as 

an assumption. It is because the rod is a rigid object, so it cannot support acceleration with elastic force 

by deforming. 

The reason why two motion stages exist is due to the variation in the direction of acceleration of the 

mass center. Imagine the trajectory of the mass center as a quarter circle, and it can be expressed by a 

combination of trigonometric functions. The expression should also include the coefficient of friction 

according to the conclusion in Section 1. This combination with properties of trigonometric functions 

will cause the variation of direction (sign) of acceleration, and lead to two different stages. But the 

conditions for changing signs will depend on other factors (i.e., μ𝑠, θ0 ) which we will evaluate 

comprehensively in the next section. 

3.  Theoretical analysis 

We pick the contacting point between the rod and the horizontal surface as the reference point for our 

computing of physical quantity, therefore the torque caused by friction and normal force can be ignored. 

3.1.  Stationary stage 

We first start with stationary. For this section, we will examine various static friction coefficients μ𝑠 and 

figure out the conditions on 𝜇𝑠 for a dynamics sliding stage to exist. In hindsight, most of the equation 

will depend on 𝑔/𝑙, so we extract it out and compose a dimensionless variable 𝑇 as an independent 

variable for convenience for further analysis. 

𝑇 = 𝑡√
𝑔

𝑙
(1) 

In which, 𝑡 is the ordinary time, we regard 𝑇 as a reference time. 

We presumed the rod is a rigid object, then the moment of inertia of the rod [3] is 

𝐼 =
1

3
𝑚𝑙2 (2) 

With regard to the torques, we have the relationship [4]. 

𝑑2θ

𝑑𝑇2
=
𝑀

𝐼
=

3

2
sin θ (3) 
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We now apply an initial condition θ(0) = θ0, θ̇(0) = 0 , and the solution of this differentiation 

equation can be expressed in Jacobian ellipse functions [5] 

𝜃(𝑇) = 2arcsin {sin (
θ0
2
) cd(𝑖√

3

2
𝑇, sin

2 (
𝜃0

2
) )} (4) 

For the forces in the horizontal and vertical direction, we suppose the coordinates of the mass center 

as (xC,  yC), and obviously, we can express the magnitude of coordinates as follows 

𝑥𝐶 =
𝑙

2
sin θ ,    𝑦𝐶 =

𝑙

2
cos θ (5) 

Where the 𝜃 is the angle between the rod and the vertical. And the second derivative of 𝑥𝐶 and 𝑦𝐶  is 

�̈�𝑐 =
𝑙

2

𝑑2θ

𝑑𝑡2
cos θ −

𝑙

2
(
𝑑θ

𝑑𝑡
)

2

sin θ ,    �̈�𝑐 = −
𝑙

2

𝑑2θ

𝑑𝑡2
sin θ−

𝑙

2
(
𝑑θ

𝑑𝑡
)

2

cos θ (6) 

Apply Newton's second law in both horizontal and vertical directions 

{
𝑚 ⋅ �̈�𝑐 = N−𝑚𝑔
𝑚 ⋅ �̈�𝑐 = μ

𝑠
N (7) 

Note that the less or equal symbol on the second equation, as long as the condition is not satisfied, 

the stationary state converts to the dynamic state. We present all the constraints in one equation and 

apply our dimensionless variable T. 

𝑑2θ

𝑑𝑇2
(

1

μ
𝑠

+ tan θ) + (
𝑑θ

𝑑𝑇
)

2

(1−
tan θ

μ
𝑠

) −
2

cos θ
≤ 0 (8) 

Using energy conservation to find the explicit form of the square of the first derivative of θ 

(
𝑑θ

𝑑𝑇
)

2

= 3(cos θ0 − cos θ) (9) 

Combine with the very first differentiation equation 
d2θ

dT2
=

3

2
sinθ , the inequality can be further 

simplified as follows 
3

2
sin θ(

1

μ
𝑠

+ tan θ) + 3(cos θ0 − cos θ) (1−
tan θ

μ
𝑠

) ≤
2

cos θ
(10) 

As shown above, the inequality only has three independent variables 𝜇𝑠, 𝜃0, and T. We now want to 

see for what interval of  𝜇𝑠the dynamic stage is able to occur at some T, i.e. the condition 𝑚 ⋅ ẍ𝐶 ≤ μsN 

is not satisfied for at least one T value. Trying to solve this equation by brute force is unrealistic, What 

we can do is evaluate the behavior near limits T → 0  and μs → ±∞  and see how conditions can be 

satisfied. 

We first start with the situation withT → 0, at the same time θ → θ0. The μs can be arbitrarily small 

as long as μs is greater than zero. So the very first restriction is 

μ
𝑠
≥ 0 (11) 

And another task is dealing with the situation in which μs → ∞. We first resort to our inequality (10) 

as the following order 

(
3

2
sin θ−

3

μ
𝑠

(cos θ0 − cos θ)) sin θ + (
3

2μ
𝑠

sin θ+ 3(cos θ0 − cos θ)) cos θ− 2 ≤ 0 (12) 

When  𝜇𝑠 → ∞, terms which are proportional to μs
−1 are negligible. The inequality becomes 

3

2
sin

2
θ + 3(cos θ0 − cos θ) cos θ− 2 ≤ 0 (13) 

Use simple trigonometric identities and simplify, we have 

− cos 2θ+ 4(cos θ0 − cos θ) cos θ ≤
5

3
(14) 
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We evaluate the maximum value of the left-hand side for the above inequality. If the maximum value 

is greater than 5/3, the rod can still move. And the maximum value occurs at 

θmax = arccos (
cos θ0

3
)     Maximum Value 

4+ cos 2𝜃0

3
(15) 

For limit θ0 = 0, maximum value is 5/3. This result is out of expectations, which means that even if 

static friction is tremendous, the rod still has an instant to start sliding (for a suitable θ0). The underlying 

explanation to this is that the normal force has a minimum value depends on the initial angle of the rod 

(forθ0 → 0 , the minimum is 0), with some suitable  𝜇𝑠 , the driving force is able to overcome static 

friction since normal force is relatively small. But an alert is that we made a sloppy decision on the sign 

of the very first inequalities. The exact form should be 

{
𝑚 ⋅ �̈�𝑐 = N−𝑚𝑔

𝑚 ⋅ |�̈�𝑐| = μ
𝑠
N (16) 

Suppose θ0 → 0, maximum value occurs at arccos 1/3, we need to check the direction of ẍ𝑐 

�̈�𝑐 =
3

4
sin (arccos

1

3
) ×

1

3
−

3

2
(1−

1

3
) sin (arccos

1

3
) = −

√2

2
(17) 

as shown above, the computed acceleration is in a negative direction, or in other words, the friction 

should be in a negative direction too (F = ma), and the direction of sliding is opposite to the direction 

of friction, which is the positive direction. Drop a hint that the rod may have a forward stage without 

going backward. The experiment we mentioned in Section 1 supports this: If you stand a ruler above a 

wet tissue, where the friction is relatively larger, and give it a small initial angle, then release it, the ruler 

first rotates, and moves forward without going backward. 

However, if the initial angle is large too, the rod may not be able to overcome the static friction force 

(i.e. cannot exceed 5/3) and simply stay at the origin. Unfortunately, the exact relationship of it cannot 

be solved with any manual methods and stated in analytical expressions. In conclusion, for some large 

𝜇𝑠, and an indeterminate range of θ0, the rod can still slide, but only in the forward direction. We now 

put our focus on the premise needed on 𝜇𝑠 for the rod to have a backward sliding. We state Equation (9) 

here again. We state the inequality again here. 
3

2
sin θ(

1

μ
𝑠

+ tan θ) + 3(cos θ0 − cos θ) (1−
tan θ

μ
𝑠

) ≤
2

cos θ
(18) 

To make the LHS greater than RHS with a maximum 𝜇𝑠, we try to do some qualitative analysis. It's 

easy to prove that 

3(cos θ0 − cos θ) <
3

2
sin θ < 1 (19) 

stands for a large range of θ , which covers our interest range, since if this relationship is no more 

established, the second term in inequality takes domination, for maximizing the LHS the 𝜇𝑠 will have a 

trend to turn negative, then friction is in the negative direction, corresponds to a forward motion and is 

what we aim to avoid in this part of analysis. So to make the LHS relatively larger, we maximize the 

coefficient of the first term, and at the same time maintain the second term not to be extremely negative. 

In summary 

{
 
 

 
 

3

2
sin𝜃(

1

𝜇𝑠
+ tan𝜃) ≥

2

cos𝜃

1−
tan𝜃

𝜇𝑠
≥ −𝜉

(20) 

In which, ξ > 0 is an empirical value, we include this factor since when the first term reaches the 

maximum value, it may exceed 2/ cos θ , therefore, the second term is able to be negative, from 

numerical simulation we find ξ = 0.52 gives good fits. We list two inequalities together. 
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tan θ

ξ+ 1
≤ μ

𝑠
≤ (

4

3 sin θ cos θ
− tan θ)

−1

(21) 

We take the equal sign and solve out the angle and corresponding time, marking them as θ∗ and T∗, 
which tell us where and when the LHS reaches maximum. 𝜃∗ can be solved out in explicit, is θ∗ =
0.642rad. 

In the analysis above, 𝜇𝑠 only works as an intermediate value, trying to find the maximum value by 

using the inequality above will only give a rough and inaccurate result, a better opportunity is 

substituting 𝜃∗ to the original inequality 

3

2
sin θ

∗ (
1

μ
𝑠

+ tan θ
∗) + 3(cos θ0 − cos θ

∗) (1−
tan θ

∗

μ
𝑠

) −
2

cos θ
∗ = 0 (22) 

and solve out 𝜇𝑠, represents as μs
∗, which stands for a rather accurate approximation of the maximum 

coefficient of static friction for the backward stage. Examples as 

θ0 =
5

180
π,    μ

𝑠
∗ = 0.371(0);     θ0 =

15

180
π,    μ

𝑠
∗ = 0.396(8) (23) 

and these approximations fit well. 

At the very end, we will take a look at what will happen if θ0 ≥ 0.642rad, i.e. the initial angle already 

exceeds the angle where the maximum value occurs. In this situation, θ∗ is simply θ0, the rod starts 

sliding without a stationary stage. Similarly, μs
∗ can be solved by substituting. And the equation is 

3

2
sin θ0 (

1

μ
𝑠

+ tan θ0) −
2

cos θ0

= 0 (24) 

Which is much more simplified compared to the previous one. The 𝜇𝑠 got from the equation above 

will still guarantee the existence of backward motion, we can now apply Lagrange multiplier method [6] 

to find the maximum 𝜇𝑠 and corresponding θ0 for a backward motion. i.e. we what to find: 

{

𝑀𝑎𝑥𝑖𝑚𝑢𝑚   𝑓(𝜇𝑠, 𝜃0) = 𝜇𝑠

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑔(𝜇𝑠, 𝜃0) =
3

2
sin𝜃0 (

1

𝜇𝑠
+ tan𝜃0)−

2

cos𝜃0

(25) 

Applying Lagrange multiplier parameter λ, and equations are 

{
  
 

  
 1−

3λ

2μ
𝑠
2

sin θ0 = 0

3

2
sin 𝜃0 (

1

𝜇𝑠
+ tan𝜃0) −

2

cos𝜃0

= 0

−
𝜆

2
sec𝜃0 tan𝜃0 +

3𝜆

2
cos𝜃0 (

1

𝜇𝑠
+ tan𝜃0) = 0

(26) 

Which can be solved explicitly, our desired result is 

μ
𝑠
∗ =

3

4
;      θ0 = arctan 2 (27) 

So in summary, as long as μs ≤ 3/4, you can always find a range of θ0 for the mass to slide. The 

only difference is the existence of stationary stage or in specific 0 < θ0 < 0.642 stationary stages exist, 

and for other θ0 it is absent. 

To conclude this whole section, we list all potential situations as following 

⚫ For 0 ≤ μ𝑠 ≤ μ𝑠
∗,  0 < θ0 < 0.642, both stationary stage and dynamic stage present 

⚫ For 0 ≤ μ𝑠 ≤ μ𝑠
∗,  0.642 ≤ θ0 ≤

π

2
, no stationary stage but dynamic stage presents 

⚫ For μ𝑠 > μ𝑠
∗, indeterminate, may stay stationary or slide directly forward 
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3.2.  Dynamic stage 

When the driving force overcomes static friction force, the rod starts to slide. We include an inertia force 

in order to describe the following motion within an inertial reference frame. In magnitude 

Finertia = −𝑚
𝑑2𝑥

𝑑𝑡2
(28) 

In which the x is the displacement of the contacting point between the rod and table. Again we 

suppose the coordinates of the mass center are as above. The equations now become 

{
 
 

 
 
𝑚 ⋅ �̈�

𝑐
= N −𝑚𝑔

m ⋅ �̈�𝑐 = −sgn(�̇�) ⋅ 𝜇𝑑𝑁 −𝑚
𝑑2𝑥

𝑑𝑡2

𝑙2

3
𝑚�̈� = −𝑚

𝑑2𝑥

𝑑𝑡2

𝑙

2
cos𝜃 +𝑚𝑔

𝑙

2
sin𝜃

(29) 

With simplification and applying T (here we set T to start from 0, in actual simulation T should starts 

at Tslide), we obtain the sophisticated result. 

2

3

𝑑2θ

𝑑𝑇2
= [

1

2

𝑑2θ

𝑑𝑇2
cos θ −

1

2
(
𝑑θ

𝑑𝑇
)

2

sin θ+ sgn(�̇�)μ
𝑑 (−

1

2

𝑑2θ

𝑑𝑇2
sin θ−

1

2
(
𝑑θ

𝑑𝑇
)

2

cos θ)] cos θ (30) 

        +(sgn(�̇�)μ
𝑑

cos θ+ sin θ) 

And we write the initial conditions(from the end of the stationary stage) as 

θ(0) = ϕ,    θ̇(0) = 𝛼 (31) 

In which the sgn gives the sign of a value, we include this to ensure the friction is in the opposite 

direction of velocity. The impediment to solving this differentiation equation caused us to do no further 

analysis, for this, we can only take numerical simulation. So the analysis of the dynamic stage will be 

put into Section 4. 

4.  Simulation 

We have finished the theoretical part of this problem, and now we will use math tools to do simulation. 

The whole simulation will be separated into 4 parts, stationary, backward, forward, and after-colliding 

phases. 

For the whole simulation, we will still use our reference time T for simplicity. All degrees are in 

radius, and the length of the rod is normalized to 1. For a realistic situation, we put l  and g  into 

consideration, and the ordinary time can be computed with t = T√l/g. 

4.1.  Stationary stage 

We will first evaluate the stationary stage, aiming to verify our conclusion in Section 3. We illustrate the 

result of simulating in contour plot [7]. The plotted function is 

𝑓(μ𝑠, θ0, θ) = hardtanh(
𝑥�̈�

μ
𝑠
𝑁
) (32) 

The hardtanh function [8] restricts all values in range [−1,1], which is defined as 

hardtanh(𝑥) = max(−1,min(1, 𝑥)) (33) 

The reason why we use fractions is that with fractions we can distinguish the sign of ẍ𝑐  more 

straightforwardly which makes it easier for us to determine the direction of sliding. To be specific, for 

those areas with a value of -1 (dark blue) the rod will go forward (the backward stage is absent), and for 

those areas with a value of 1 (light red), a backward stage exists. We start from the situation where μs is 

small (0 < μs < 1). 
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Figure 2. The plot for small μs. For those parts with θ0 > θ is unreasonable and was cut. 

From our analysis in Section 3, μs = 0.396 is the maximum coefficient of static friction for a rod 

with initial angle θ0 =
15π

180
  to make backward motion, and this is proved in the left diagram of Figure 

1: If the value of μs is a bit larger, then the vertical line will lose contact with light red area, i.e., it will 

present no backward stage. We also predicted that μs = 0.75 is the maximum value for the backward 

stage to exist. We set μs = 0.74 in the right diagram of Figure 1, which is quite close to 0.75. We can 

still observe a very small area for light red, which means the rod still has a tiny opportunity to have 

backward motion. For μs = 0.75 , the last area will completely disappear, with no more backward 

motion. 

And now we start evaluating some large μs(μs > 1) . In reality, this kind of friction exists (e.g., 

Lubricated gold between gold [9]). As shown in Figure 2: For those relatively large μs, we can still 

observe a considerable area of value -1, which means the rod will directly go forward after the stationary 

stage. 

Comparing all four diagrams, we conclude that as θ0 increases the area of value -1 becomes smaller.  

As we found in Section 3, even though μs → ∞, the rod can still slide, and on the diagram, the area with 

value -1 will become a dot on the θ axis at θ = arccos(1/3). However, the relationship between μs and 

θ0 still can't be expressed in analytical expression. 

 

Figure 3. The plot for large μs. Note that, the light red in the figure no longer represents the area with 

values equal to 1. In other words, a backward stage has no possibility to exist. 

But now with the help of the computer, we can generate the curve that represents the relationship 

between μs and θ0. As shown in Figure 3 and Figure 4, which show the relationship for small μs and 

large μs correspondingly. 

Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/12/20230438

84



  

Figure 4. The curve of maximum μs for the rod to have forward motions for each θ0. 

For Figure 3, the maximum point occurs at θ0 = arccos 2 and μs = 0.75. And this is the maximum 

coefficient of static friction for backward motion as we concluded in Section 3. For Figure 4, the line 

should contact the θ0 axis when θ0 → π/2 but because of the scale of the diagram it did not present 

clearly on the graph. The curve has an asymptote for θ0 → 0, at there, the maximum μs → ∞, comes up 

with our conclusion in Section 3. 

4.2.  Dynamic stage 

Now we will simulate the dynamic stage. To investigate both backward and forward stages, including 

the conversion between them, we will take some relatively friendly μs and θ0 and put focus on the effect 

of varying μd on the whole dynamic motion. 

The main idea of simulating is solving differential equations with the computer, there will be three 

equations in total: backward sliding, forward sliding, and after colliding with the ground. The first two 

equations are given in Section 3.2, and the third equation is Newton's second law with a deceleration of 

−μd. 

As shown in Figure 5, we showed the situation with fixed μs = 0.3 and θ0 = 5π/180 and different 

μd, where according to reality, most of μd should satisfy restriction μd ≤ μs [10]. No matter what value 

of μd the forward motion always takes domination, and the value of μd will only affect the distance of 

both backward and forward motion.  

   

   

Figure 5. The diagrams for both the backward and forward stages were presented. All figures are 

generated under situation of μs = 0.3 and θ0 =
5π

180
. 

A crucial problem with the graphics is that there exist several turning points which have no physical 

meaning. The reason why this is present is we used an idealized model of friction, where the conversion 
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from static friction to dynamic friction is a discontinuous jump. If we put a realistic model into use will 

increase the complexity of the question, which is not the topic of this paper. 

And it turns out that, for certain small μs, the backward sliding will take domination and the rod will 

stop behind the initial position. For a limit with μs = 0 , the rod experiences no horizontal force, 

therefore the position of the mass center will not move and the overall effect is a backward sliding with 

distance l/2. 

For θ0 = 5π/180 the maximum coefficient of static friction for a backward stage to exist is μs =
0.371 and was proved to be true in the last section. And now we will set μs to 0.4, to investigate the 

forward motion without a backward stage. 

 

 

Figure 6. The diagrams for only forward motion. All figures are generated under the situation of μ
s
=

0.4 and θ0 =
5π

180
. 

As shown in Figure 6. From the graphics, we can conclude that most of the forward motions occur 

after the rod collides with the ground, and the moving during toppling only devotes a small amount of 

distance. The reason for this kind of situation is that the rod starts sliding near the end of rotation(θ =
0.9rad). Similarly, the variation of μd will only affect the distance traveled. 

5.  Conclusion 

In this paper, we did a deep investigation into the phenomenon of a toppling ruler. We explained the 

essential reason for sliding and demonstrated the internal mechanism with theoretical analysis. Finally, 

we verified our theory with numerical simulation. 

The question was found in our daily life, it seems quite obvious and is supposed to be in our common 

sense, but the exact mechanism and conditions behind it are far beyond our expectations. However, it is 

also because of its complexity, that the problem was able to have tons of variations and was fun for 

analyzing. 
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