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Abstract. In the actual financial market, the classical Black-Scholes (B-S) model can’t 

perfectly describe the process of stock price. Besides, memory effect is an important 

phenomenon in financial systems. Thus, in this paper, we establish a fractional order stochastic 

differential equations (FSDE) which is driven by fractional Brownian motion (fBm) to describe 

the effect of noise memory and trend memory in financial pricing. Finally, we derive a 

European option pricing formula based on the established model. After conducting an 

empirical analysis based on the SSE 50ETF, we find that the established model performs better 

than the traditional one. 
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1.  Introduction 

Hurst, a statistician, first proposed that time series have long memory, and proposed to use 𝑅/𝑆 

analysis method to test the long memory characteristics of event series [1]. Then there are many 

scholars pointed out that asset price fluctuations exhibit long memory [2-6]. Hurst index can be used to 

measure whether time series have long memory. When 𝐻 = 0.5, time series can be described by 

random walks, and time series is the <ion. However, when 0.5 < 𝐻 < 1, time series has positive 

correlation and persistent behavior, which is long-dependence memory. In the case of 0 < 𝐻 < 0.5, 

time series has negative correlation and anti-persistent behavior, which is called short-dependence 

memory. In 1968, Mandelbrot and Van Ness put forward fractional Brownian motion [7]. For time 

series with long memory, the mathematical model combined with Hurst index forms a complete and 

self-consistent research system, which enables people to study how long memory affects the change of 

time series. In 1994, Peters applied Hurst index and fractional Brownian motion to capital market, 

pointed out that stock price series obey fractional Brownian motion, and proposed the famous fractal 

market hypothesis [8]. 

A large number of scholars have studied option pricing based on fractional Brownian motion. 

Based on fractional Itô integration, Necula (2002) used the risk-neutral valuation theorem to obtain the 

Black-Scholes pricing formula and analytical solution [9]. The Monte Carlo simulation method was 

used by Wang,J. et al.(2021) to price the Equity-Linked Securities option by fractional Brownian 

motion, and the new model produces a great deviation[10]. Liu,Z.B. and Huang,S. (2021) established a 
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model based on GARCH and fBm so as to provide reference for China’s upcoming carbon option 

trading through carbon option price forecasting research[11]. Zhao,P. et al.(2022) presented a new 

pricing method on N-fold compound option by adopting the theory of fuzzy sets into a fractional 

stochastic financial model [12]. Dufera,T.T. (2024) examined the impact of fBm on option pricing and 

dynamic delta hedging and ultimately the dynamic interaction between the Hurst index and option 

pricing is found, which provides valuable implications for effective risk management strategies [13]. 

However, the memory effect includes noise memory effect and trend memory effect. Stochastic 

differential equations driven by fractional Brownian motion can only describes the noise memory but 

cannot be used to study the trend memory effect of stock price. So Li (2014) proposed that a fractional 

order stochastic differential equation driven by Brownian motion could be used to solve this problem 

[14].  

This is due to the fact that fractional integral and derivatives can depict the memory and inherent 

process. In 2021, Jin,T. and Xia,H. derived a more fine-grained portrayal of the real economic market 

based upon the uncertain fractional-order differential equation and put forward European lookback 

option pricing formulas [15]. Xin-Jiang He and Sha Lin (2021) introduced the stochastic volatility into 

the finite moment log-stable model, then calculated the analytical formula which is used to price the 

European options [16]. 

According to the research results of many international scholars, it is not difficult to find that 

although there have been many impressive results in the field of option pricing research, few scholars 

have taken the long memory in the option market and the fractional Brownian motion of the option 

price’s process into account simultaneously. In order to describe both the noise memory and the trend 

memory effect of stock price, in this paper, we established a fractional order stochastic differential 

equations which is driven by fractional Brownian motion and apply it to the options pricing. We 

assume the financial asset price 𝑆  follows d
𝛼𝑆 = 𝜇(𝑆, 𝑡)d𝑡𝛼 + 𝜎(𝑆, 𝑡)d𝐵𝐻(𝑡) , then derive the Itô 

lemma and the partial differential equations under the circumstances of the fractional derivative 𝛼 ∈
(0,1] and (1,2) respectively. After that, we derive the European call option pricing formula and apply 

it to the SSE 50ETF’s option pricing. 

The main contribution of this article is that we derive a new effective model which can describe 

both the noise memory and the trend memory effect of financial market. In addition, we apply it into a 

specific domain - European option pricing. Finally, a new option pricing fomula is obtained. In order 

to test the effect of the fomula, we conducted empirical analysis and obtained satisfactory results. The 

main difficulty of this paper is how to combine the fractional stochastic differential equation with the 

fractional Brownian motion so as to give a more effective European option pricing formula. 

The rest of this paper is organized as follows. Section 2 gives some basic concepts and theories on 

the fractional Brownian motion and fractional order stochastic differential equations. And then 

establishes the fractional order stochastic differential equation in the financial market. In Section 3, 

based on the proposed stochastic differential equation with fractional order derivative, we give the 

corresponding Itô formula under the established model and then derive the fractional European option 

pricing formula. In Section 4, the traditional B-S model and the fractional stochastic differential 

equation driven by fractional Brownian motion are used to price the options based on an SSE 50ETF. 

The results of the mean square error comparison show that the new model is better than the traditional 

B-S model. The conclusions drawn from this study are presented in Section 5. 

2.  Introduction to fractional Brownian motion and fractional order stochastic differential 

equations 

In this section, we first give some preliminaries about the fractional order integration and derivatives, 

and then give the relevant properties of fractional Brownian motion. Finally, expand them to the fields 

of the stochastic differential equations. Thus, based on these previous research results, we can 

construct the generalized the fractional order stochastic differential equation driven by fractional 

Brownian motion. 
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2.1.  Fractional order integration and derivatives 

There exist various of definitions of fractional derivatives. In this paper, we consider these two 

definitions, which are Riemann-Liouville integral and Caputo derivative [17]. 

Definition 1. 𝑓(𝑥) is a continuous function. Its Riemann-Liouville fractional integral of order 𝛼 of 

function 𝑓(𝑥) is defined as follows: 

𝐼𝛼𝑓(𝑥) =
1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1
𝑥

0

𝑓(𝑡)𝑑𝑡 𝛼 > 0, 𝑥 > 0 (1) 

where 𝛼 is a fraction and 𝛤(𝛼) is the Gamma function with 𝛤(𝛼) = ∫ 𝑥𝛼−1
∞

0
exp(−𝑥)𝑑𝑥. 

Definition 2. The Caputo fractional derivative of order 𝛼 of function 𝑓(𝑥) is defined as: 

𝑑𝛼𝑓

𝑑𝑥𝛼
= 𝐷𝛼𝑓(𝑥) = 𝐼𝑚−𝛼𝐷𝑚𝑓(𝑥) =

1

𝛤(𝑚 − 𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼−1
𝑥

0

𝑓(𝑚)(𝑡)𝑑𝑡 (2) 

where 𝛼 is a fraction, 𝑚 is an integer and 𝑚 = [𝛼] is the value of 𝛼 rounded up to the nearest 

integer, and 𝑓(𝑚) is the ordinary derivative of 𝑓. 

And the relationship between fractional difference and finite difference is obtained as follows [14]: 

𝑑𝛼𝑓 = 𝛤(1 + 𝛼)𝑑𝑓 0 < 𝛼 ≤ 1

𝑑𝛼𝑓 = 𝛤(1 + 𝛼)[𝑑𝑓 − 𝑓′(𝑥)𝑑𝑥] 1 < 𝛼 < 2
 (3) 

For the purpose of constructing the fractional order stochastic differential equations in this section, 

now we give some results of the integral with respect to (𝑑𝑡)𝛼 in Lemma 1 presented below [18]. 

Lemma 1. Let 𝑓(𝑡) denote a continuous function, then its integral with respect to (𝑑𝑡)𝛼 is defined 

by the following equalities: 

∫ 𝑓
𝑡

0

(𝜏)(𝑑𝜏)𝛼 = 𝛼∫ (𝑡 − 𝜏)𝛼−1
𝑡

0

𝑓(𝜏)𝑑𝜏 0 < 𝛼 < 1

∫ 𝑓
𝑡

0

(𝜏)(𝑑𝜏)𝛼 = 𝛼(𝛼 − 1)∫ (𝑡 − 𝜏)𝛼−2
𝑡

0

𝐹(𝜏)𝑑𝜏 1 < 𝛼 < 2

 (4) 

where 𝐹(𝑡) = ∫ 𝑓
𝑡

0
(𝜏)𝑑𝜏, on making 𝑓(𝜏) = 1, we can have the result: ∫ 𝑓

𝑡

0
(𝜏)(𝑑𝜏)𝛼 = 𝑡𝛼. 

2.2.  Fractional Brownian motion 

Now we introduce the definition of fractional Brownian motion [19,20]: 

Definition 3. Suppose (𝛺, 𝐹, 𝑃) is a complete probability space, the fractional Brownian motion 

with the Hurst parameter 𝐻 in space is a Gaussian process that satisfies: 

(i) For every 𝑡 > 0, we have 𝐵𝐻(𝑡) = 0 and 𝐸(𝐵𝐻(𝑡)) = 0. 

(ii) 𝐵𝐻(𝑡) has homogeneous increments. 

(iii) Cov(𝐵𝐻(𝑡), 𝐵𝐻(𝑠)) =
1

2
{|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻}, 𝑠, 𝑡 ∈ 𝑅+ , where Hurst index 𝐻  is a 

constant, and 𝐻 ∈ (0,1). 
And fractional Brownian motion has some properties [19]: 

Theorem 1. Fractional Brownian motion {𝐵𝐻(𝑡), 𝑡 ≥ 0} has self-similarity. For every 𝐻 ∈ (0,1) 
and 𝛼 > 0, {𝐵𝐻(𝛼𝑡), 𝑡 ∈ 𝑅+}and {𝛼𝐻𝐵𝐻(𝑡), 𝑡 ∈ 𝑅+}have the distributions with the same dimension. 

Theorem 2. Fractional Brownian motion {𝐵𝐻(𝑡), 𝑡 ≥ 0} has 𝑝-degree variation property. Suppose 

that for every (𝑠, 𝑡) ∈ [0,1], 𝑝 > 0, there existent a constant 𝐶(𝐶 = 𝐸(|𝐺|𝑝), 𝐺 ∼ 𝑁(0,1)), we have: 

𝐸|𝐵𝐻(𝑡) − 𝐵𝐻(𝑠)|
𝑝 ≤ 𝐶|𝑡 − 𝑠|𝑝𝐻. 

2.3.  Fractional order stochastic differential equation driven by fractional Brownian motion 

Here, we generalize the classic stochastic differential equation to estabish the fractional order 

stochastic differential equation driven by fractional Brownian motion based on the results presented 

before and then apply it to the option pricing in the next section. 
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Definition 4. Assuming that a financial asset price is 𝑆, according to the fractional order stochastic 

differential equation, and considering the fractional Brownian motion, we can get the equation as 

follows: 

𝑑𝛼𝑆 = 𝜇(𝑆, 𝑡)(𝑑𝑡)𝛼 + 𝜎(𝑆, 𝑡)𝑑𝐵𝐻(𝑡) (5) 

where 𝜇(𝑆, 𝑡)  is the drift parameter, 𝜎(𝑆, 𝑡)  is the diffusion parameter, 𝑑𝐵𝐻(𝑡) = 𝜖√𝑑𝑡
2𝐻 , 𝜖 ∼ 

𝑁(0,1), and 𝑑𝑡 and 𝑑𝐵𝐻(𝑡) are uncorrelated. 

In this paper, we just consider the situation that 𝛼 ∈ (0,2). By using the results of (3), we can 

rewrite (5) into the following form of 𝑑𝑆 with respect to (𝑑𝑡)𝛼 : 

𝑑𝑆 =
𝜇(𝑆, 𝑡)

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 +

𝜎(𝑆, 𝑡)

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡), 0 < 𝛼 ≤ 1

𝑑𝑆 =
𝜇(𝑆, 𝑡)

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 +

𝜎(𝑆, 𝑡)

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡) + 𝑆

′(𝑡)𝑑𝑡, 1 < 𝛼 < 2

 (6) 

where 𝑆′(𝑡) is the first order derivative of 𝑆 about time 𝑡. 

3.  European option pricing 

In this section, the corresponding Itô formula and European call option pricing formula are derived 

based on the fractional order stochastic differential equation driven by fractional Brownian motion. 

3.1.  Itô Lemma 

First, in order to study the stochastic processes of the martingale type, let’s focus on the derivation of 

Itồ’s rule. 

Definition 5. A continuous semimartingale 𝑋 = {𝑋𝑡 , ℱ𝑡; 0 ≤ 𝑡 < ∞} is an adapted process which 

has the decomposition, 

𝑋𝑡 = 𝑋0 +𝑀𝑡 + 𝐵𝐻(𝑡); 0 ≤ 𝑡 < ∞, (7) 

where 𝑀 = {𝑀𝑡, ℱ𝑡; 0 ≤ 𝑡 < ∞},𝐵 = {𝐵𝐻(𝑡), ℱ𝑡; 0 ≤ 𝑡 < ∞}. 
Lemma 2. Let 𝑓:ℝ → ℝ be a function of class 𝐶2 and let 𝑋 = {𝑋𝑡, ℱ𝑡; 0 ≤ 𝑡 < ∞} be a continuous 

semimartingale with decomposition (7), ⟨𝑀⟩ is the quadratic variation process of 𝑀. Then, 

𝑓(𝑋𝑡) = 𝑓(𝑋0) + ∫ 𝑓′
𝑡

0

(𝑋𝑠)𝑑𝑀𝑠 +∫ 𝑓′
𝑡

0

(𝑋𝑠)𝑑𝐵𝐻(𝑠) +
1

2
∫ 𝑓′′
𝑡

0

(𝑋𝑠)𝑑⟨𝑀⟩𝑠 (8) 

and equation (8) can be written in differential notation: 

𝑑𝑓(𝑋𝑡) = 𝑓
′(𝑋𝑡)𝑑𝑀𝑡 + 𝑓

′(𝑋𝑡)𝑑𝐵𝐻(𝑡) +
1

2
𝑓′′(𝑋𝑡)𝑑⟨𝑀⟩𝑡 (9) 

Proof. Let us fix 𝑡 > 0 and a partition 𝛱 = {𝑡0, 𝑡1, … , 𝑡𝑚} of [0, 𝑡], with 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 =
𝑡. A Taylor expansion yields 

𝑓(𝑋𝑡) − 𝑓(𝑋0) = ∑{𝑓(𝑋𝑡𝑘) − 𝑓(𝑋𝑡𝑘−1)}

𝑚

𝑘=1

=∑𝑓′
𝑚

𝑘=1

(𝑋𝑡𝑘−1)(𝑋𝑡𝑘 − 𝑋𝑡𝑘−1) +
1

2
∑𝑓′′
𝑚

𝑘=1

(𝜂𝑘)(𝑋𝑡𝑘 − 𝑋𝑡𝑘−1)
2

 (10) 

where 𝜂𝑘(𝜔) = 𝑋𝑡𝑘−1(𝜔) + 𝜃𝑘(𝜔) (𝑋𝑡𝑘(𝜔) − 𝑋𝑡𝑘−1(𝜔)) for some appropriate 𝜃𝑘(𝜔) satisfying 0 ≤

𝜃𝑘(𝜔) ≤ 1,𝜔 ∈ 𝛺. We conclude that 

𝑓(𝑋𝑡) − 𝑓(𝑋0) = 𝐽1(𝛱) + 𝐽2(𝛱) +
1

2
𝐽3(𝛱) (11) 

where 
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𝐽1(𝛱) ≜ ∑𝑓′
𝑚

𝑘=1

(𝑋𝑡𝑘−1)(𝐵𝐻(𝑡𝑘) − 𝐵𝐻(𝑡𝑘−1))

𝐽2(𝛱) ≜ ∑𝑓′
𝑚

𝑘=1

(𝑋𝑡𝑘−1)(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)

𝐽3(𝛱) ≜ ∑𝑓′′
𝑚

𝑘=1

(𝜂𝑘)(𝑋𝑡𝑘 − 𝑋𝑡𝑘−1)

 (12) 

It is easily seen that 𝐽1𝛱 converges to the Lebesgue-Stieltjes integral ∫ 𝑓′
𝑡

0
(𝑋𝑠)𝑑𝐵𝐻(𝑠), as the 

mesh ∥ 𝛱 ∥= max1<𝑘<𝑚|𝑡𝑘 − 𝑡𝑘−1| of the partition decreases to zero. On the other hand, the process 

𝑌𝑠(𝜔) ≜ 𝑓
′(𝑋𝑠(𝜔)); 0 ≤ 𝑠 ≤ 𝑡, 𝜔 ∈ 𝛺  is in ℒ∗  (adapted,continuous,and bounded); we intend to 

approximate it by the simple process 

𝑌𝑠
𝛱(𝜔) ≜ 𝑓′(𝑋0(𝜔))10(𝑠) +∑𝑓′

𝑚

𝑘=1

(𝑋𝑡𝑘−1(𝜔)) 1(𝑡𝑘−1,𝑡𝑘](𝑠) (13) 

Indeed, we have 𝐸𝐼𝑡
2(𝑌𝛱 − 𝑌) = 𝐸 ∫ |𝑌𝑠

𝛱 − 𝑌𝑠|
2𝑡

0
𝑑⟨𝑀⟩𝑠 → 0  as ∥ 𝛱 ∥→ 0 , by the bounded 

convergence theorem, and so 

𝐽2(𝛱) = ∫ 𝑌𝑠
𝛱

𝑡

0

𝑑𝑀𝑠 →
∥𝛱∥→0

∫ 𝑌𝑠

𝑡

0

𝑑𝑀𝑠 (14) 

in quadratic mean. 

𝐽3(𝛱) can be written as 

𝐽3(𝛱) = 𝐽4(𝛱) + 𝐽5(𝛱) + 𝐽6(𝛱) (15) 

where 

𝐽4(𝛱) ≜ ∑𝑓′′
𝑚

𝑘=1

(𝜂𝑘)(𝐵𝐻(𝑡𝑘) − 𝐵𝐻(𝑡𝑘−1))
2

𝐽5(𝛱) ≜ 2∑𝑓′′
𝑚

𝑘=1

(𝜂𝑘)(𝐵𝐻(𝑡𝑘) − 𝐵𝐻(𝑡𝑘−1))(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)

𝐽6(𝛱) ≜ ∑𝑓′′
𝑚

𝑘=1

(𝜂𝑘)(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)
2

 (16) 

Because 𝐵𝐻 has total variation bounded by 𝐾, we have 

|𝐽4(𝛱)| + |𝐽5(𝛱)| ≤ 2𝐾∥∥𝑓
′′∥∥∞ ( max1≤𝑘≤𝑚

|𝐵𝐻(𝑡𝑘) − 𝐵𝐻(𝑡𝑘−1)| + max
1≤𝑘≤𝑚

|𝑀𝑡𝑘 −𝑀𝑡𝑘−1|) (17) 

and thanks to the continuity of the processes 𝐵𝐻 and 𝑀, this last term converges to zero almost surely 

as ∥ 𝛱 ∥→ 0. As for 𝐽6(𝛱), we define 𝐽6
∗(𝛱) ≜ ∑ 𝑓′′𝑚

𝑘=1 (𝑋𝑡𝑘−1)(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)
2
 and observe |𝐽6

∗(𝛱) −

𝐽6(𝛱)| ≤ 𝑉𝑡
(2)(𝛱) ⋅ max1≤𝑘≤𝑚|𝑓

′′(𝜂𝑘) − 𝑓
′′(𝑋𝑡𝑘−1)|, where 𝑉𝑡

(2)(𝛱) is the quadratic variation of 𝑀 

over the partition 𝛱. According to the Cauchy-Schwarz inequality, we can get 

𝐸|𝐽6
∗(𝛱) − 𝐽6(𝛱)| ≤ √48𝐾

4√𝐸 ( max
1≤𝑘≤𝑚

|𝑓′′(𝜂𝑘) − 𝑓
′′(𝑋𝑡𝑘−1)|)

2
 (18) 

and this is seen to converge to zero as ∥ 𝛱 ∥→ 0 because of the continuity of the process 𝑋 and the 

bounded convergence theorem. Thus, in order to establish the convergence of the quadratic variation 

term 𝐽3(𝛱)  to the integral ∫ 𝑓′′
𝑡

0
(𝑋𝑠)𝑑⟨𝑀⟩𝑠  as ∥ 𝛱 ∥→ 0 , it suffices to compare 𝐽6

∗(𝛱)  to the 

approximating sum 
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𝐽7(𝛱) ≜ ∑𝑓′′
𝑚

𝑘=1

(𝑋𝑡𝑘−1)(⟨𝑀⟩𝑡𝑘 − ⟨𝑀⟩𝑡𝑘−1) (19) 

Then we obtain 

𝐸|𝐽6
∗(𝛱) − 𝐽7(𝛱)|

2

= 𝐸 |∑𝑓′′
𝑚

𝑘=1

(𝑋𝑡𝑘−1) {(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)
2
− (⟨𝑀⟩𝑡𝑘 − ⟨𝑀⟩𝑡𝑘−1)}|

2

= 𝐸 [∑[𝑓′′(𝑋𝑡𝑘−1)]
2

𝑚

𝑘=1

{(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)
2
− (⟨𝑀⟩𝑡𝑘 − ⟨𝑀⟩𝑡𝑘−1)}

2
]

≤ 2∥∥𝑓′′∥∥∞
2
⋅ 𝐸 [∑(𝑀𝑡𝑘 −𝑀𝑡𝑘−1)

4
𝑚

𝑘=1

+∑(⟨𝑀⟩𝑡𝑘 − ⟨𝑀⟩𝑡𝑘−1)
2

𝑚

𝑘=1

]

≤ 2∥∥𝑓′′∥∥∞
2
⋅ 𝐸 [𝑉𝑡

(4)(𝛱) + ⟨𝑀⟩𝑡 ⋅ max
1≤𝑘≤𝑚

(⟨𝑀⟩𝑡𝑘 − ⟨𝑀⟩𝑡𝑘−1)]

 (20) 

The bounded convergence theorem shows that the last term in the preceding equations goes to zero 

as ∥ 𝛱 ∥→ 0. Thus, we conclude that 

𝐽3(𝛱) →
∥𝛱∥→0

∫ 𝑓′′
𝑡

0

(𝑋𝑠)𝑑⟨𝑀⟩𝑠 (21) 

If {𝛱(𝑛)}
𝑛=1

∞
 is a sequence of partitions of [0, 𝑡] with ∥∥𝛱

(𝑛)∥∥ →
𝑛→∞

0, then for some subsequence 

{𝛱(𝑛𝑘)}
𝑘=1

∞
 we have 

lim
𝑘→∞

𝐽1(𝛱
(𝑛𝑘)) = ∫ 𝑓′

𝑡

0

(𝑋𝑠)𝑑𝐵𝐻(𝑠)

lim
𝑘→∞

𝐽2(𝛱
(𝑛𝑘)) = ∫ 𝑓′

𝑡

0

(𝑋𝑠)𝑑𝑀𝑠

lim
𝑘→∞

𝐽3(𝛱
(𝑛𝑘)) = ∫ 𝑓′′

𝑡

0

(𝑋𝑠)𝑑⟨𝑀⟩𝑠

 (22) 

Thus, passing to the limit in equation (11), we see that equation (8) holds for each 0 ≤ 𝑡 < ∞. 

Until now, the lemma 2 has been proved. 

We have the following, multidimensional version of Itô’s rule. 

Lemma 3. Let {𝑀𝑡 ≜ (𝑀𝑡
(1), … ,𝑀𝑡

(𝑑)) , ℱ𝑡; 0 ≤ 𝑡 < ∞}  be a vector of local martingales in 

ℳ𝑐,𝑙𝑜𝑐 , {𝐵𝑡 ≜ (𝐵𝑡
(1), … , 𝐵𝑡

(𝑑)) , ℱ𝑖; 0 ≤ 𝑡 < ∞} a vector of adapted process of bounded variation with 

𝐵𝐻(𝑡) = 0, and set 𝑋𝑡 = 𝑋0 +𝑀𝑡 + 𝐵𝐻(𝑡); 0 ≤ 𝑡 < ∞, where 𝑋0 is an ℱ0-measurable random vector 

in ℝ𝑑. Let 𝑓(𝑡, 𝑥): [0,∞) × ℝ𝑑 → ℝ be of class 𝐶1,2. Then, 

𝑓(𝑡, 𝑋𝑡) = 𝑓(0, 𝑋0) + ∫
∂

∂𝑡

𝑡

0

𝑓(𝑠, 𝑋𝑠)𝑑𝑠 +∑∫
∂

∂𝑥𝑖

𝑡

0

𝑑

𝑖=1

𝑓(𝑠, 𝑋𝑠)𝑑𝐵𝐻
(𝑖)(𝑠)

+∑∫
∂

∂𝑥𝑖

𝑡

0

𝑑

𝑖=1

𝑓(𝑠, 𝑋𝑠)𝑑𝑀𝑠
(𝑖)

+
1

2
∑∑∫

∂2

∂𝑥𝑖 ∂𝑥𝑗

𝑡

0

𝑑

𝑗=1

𝑑

𝑖=1

𝑓(𝑠, 𝑋(𝑠))𝑑⟨𝑀(𝑖), 𝑀(𝑗)⟩
𝑠
, 0 ≤ 𝑡 < ∞.

 (23) 

To prove this lemma, we only need to follow the proof of lemma 2 procedure above. 
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Then, we apply the above lemma to the financial market. Assume that 𝑆 is the stock price which 

follows the equation 𝑑𝛼𝑆 = 𝜇𝑆(𝑑𝑡)𝛼 + 𝜎𝑆𝑑𝐵𝐻(𝑡). We have: 

When 0 ≤ 𝛼 < 1 . Let 𝑑𝑋𝑡 = 𝑑𝑆, 𝑑𝑀𝑠 =
𝜇𝑆

𝛤(1+𝛼)
(𝑑𝑠)𝛼 , 𝑑𝐵𝐻(𝑠) =

𝜎𝑆

𝛤(1+𝛼)
𝑑𝐵𝐻(𝑠), 𝛱 = 

{𝑡0, 𝑡1, … , 𝑡𝑚} a partition of [0, 𝑡]. Thus, according to lemma 2 we obtain 

{
 
 

 
 𝑓(𝑆𝑡) = 𝑓(𝑆0) + ∫ 𝑓′

𝑡

0

(𝑆)
𝜇𝑆

𝛤(1 + 𝛼)
(𝑑𝑠)𝛼 +∫ 𝑓′

𝑡

0

(𝑆)
𝜎𝑆

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑠) +

1

2
∫ 𝑓′′
𝑡

0

(𝑆)𝑑⟨𝑀⟩𝑠

⟨𝑀⟩𝑠 = lim
∥𝛱∥→0

∑|𝑀𝑠𝑘 −𝑀𝑠𝑘−1|
2

𝑚

𝑘=1

  

Then, after calculate the equation set above, we can get the fomula in differential form 𝑑𝑓 =

[
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1+𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡 +

𝜇𝑆

𝛤(1+𝛼)

∂𝑓

∂𝑆
(𝑑𝑡)𝛼 +

𝜎𝑆

𝛤(1+𝛼)

∂𝑓

∂𝑆
𝑑𝐵𝐻(𝑡). 

When 1 < 𝛼 < 2 . Let 𝑑𝑋𝑡 = 𝑑𝑆, 𝑑𝑀𝑠
(1)
=

𝜇𝑆

𝛤(1+𝛼)
(𝑑𝑠)𝛼 , 𝑑𝑀𝑠

(2)
= 𝑆′(𝑠)𝑑𝑠, 𝑑𝐵𝐻(𝑠) = 

𝜎𝑆

𝛤(1+𝛼)
𝑑𝐵𝐻(𝑠), 𝛱 = {𝑡0, 𝑡1, … , 𝑡𝑚} a partition of [0, 𝑡]. Thus, according to lemma 3 we obtain 

{
 
 
 
 
 

 
 
 
 
 𝑓(𝑡, 𝑆𝑡) = 𝑓(0, 𝑆0) + ∫

∂

∂𝑡

𝑡

0

𝑓(𝑠, 𝑆𝑠)𝑑𝑠 + ∫
∂

∂𝑠

𝑡

0

𝑓(𝑠, 𝑆𝑠)
𝜎𝑆

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑠)

+∫
∂

∂𝑠

𝑡

0

𝑓(𝑠, 𝑆𝑠)
𝜇𝑆

𝛤(1 + 𝛼)
(𝑑𝑠)𝛼 +∫

∂

∂𝑠

𝑡

0

𝑓(𝑠, 𝑆𝑠)𝑠
′(𝑠)𝑑𝑠

+
1

2
∫

∂2

∂𝑠2

𝑡

0

𝑓(𝑠, 𝑆(𝑠))𝑑⟨𝑀
(1),𝑀(2)⟩

𝑠

𝑑⟨𝑀(1),𝑀(2)⟩
𝑠

= lim
∥𝛱∥→0

∑(𝑀𝑠𝑘
(1)
−𝑀𝑠𝑘−1

(1)
)

𝑚

𝑘=1

(𝑀𝑠𝑘
(2)
−𝑀𝑠𝑘−1

(2)
)

  

Then, after calculate the equation set above, we can get the fomula in differential form 𝑑𝑓 =

[
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1+𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 + 𝑆′(𝑡)

∂𝑓

∂𝑆
] 𝑑𝑡 +

𝜇𝑆

𝛤(1+𝛼)

∂𝑓

∂𝑆
(𝑑𝑡)𝛼 +

𝜎𝑆

𝛤(1+𝛼)

∂𝑓

∂𝑆
𝑑𝐵𝐻(𝑡). 

Finally, we get the following lemma 4. 

Lemma 4. Assume that the stock price 𝑆 follows the equation as below: 

𝑑𝛼𝑆 = 𝜇𝑆(𝑑𝑡)𝛼 + 𝜎𝑆𝑑𝐵𝐻(𝑡) (24) 

Then, the function 𝑓 = 𝑓(𝑆𝑡 , 𝑡) is an Itô stochastic process, and the following expressions hold. 

When 𝛼 ∈ (0,1]. 

𝑑𝑓 = [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡 +

𝜇𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
(𝑑𝑡)𝛼 +

𝜎𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
𝑑𝐵𝐻(𝑡)  

When 𝛼 ∈ (1,2). 

𝑑𝑓 = [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 + 𝑆′(𝑡)

∂𝑓

∂𝑆
]𝑑𝑡 +

𝜇𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
(𝑑𝑡)𝛼

+
𝜎𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
𝑑𝐵𝐻(𝑡)

 (25) 

To price a European option, we first introduce Lemma 5, which connects the fractional order 

stochastic differential equations driven by fractional Brownian motion to the partial differential 

equations. 

Lemma 5. 𝑓(𝑆(𝑡), 𝑡) is the solution of the partial differential equations: 

∂𝑓

∂𝑡
+ 𝑟𝑆

∂𝑓

∂𝑆
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 − 𝑟𝑓 = 0 (26) 
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where 𝑓(𝑆(𝑡), 𝑡) = 𝑓(𝑆(𝑡)). 

Proof. First make portfolios 𝛱 = 𝛥𝑆 − 𝑓 and 𝑑𝛱 = 𝛥𝑑𝑆 − 𝑑𝑓. 

(i) In the case of 0 < 𝛼 ≤ 1, 

𝑑𝛱 = 𝛥𝑑𝑆 − 𝑑𝑓

= 𝛥 [
𝜇𝑆

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 +

𝜎𝑆

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡)] − [

∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡

−
𝜇𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
(𝑑𝑡)𝛼 −

𝜎𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
𝑑𝐵𝐻(𝑡)

= − [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡 +

𝜇𝑆

𝛤(1 + 𝛼)
(𝛥 −

∂𝑓

∂𝑆
) (𝑑𝑡)𝛼 +

𝜎𝑆

𝛤(1 + 𝛼)
(𝛥 −

∂𝑓

∂𝑆
) 𝑑𝐵𝐻(𝑡)

 (27) 

When 𝛥 =
∂𝑓

∂𝑆
, we can get the riskless asset portfolio 

𝑑𝛱 = 𝛥𝑑𝑆 − 𝑑𝑓 = − [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡 (28) 

According to the Bellman Equation, the portfolio 𝛱 is riskless, we have 𝑑𝛱 = 𝑟𝛱𝑑𝑡, where 𝑟 is the 

riskless rate. Thus, we get the equation 𝑑𝛱 = 𝑟𝛱𝑑𝑡 = − [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1+𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡. Consequently, 

we obtain the first partial differential equation 

∂𝑓

∂𝑡
+ 𝑟𝑆

∂𝑓

∂𝑆
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 − 𝑟𝑓 = 0 (29) 

(ii) In the case of 1 < 𝛼 < 2, 
𝑑𝛱 = 𝛥𝑑𝑆 − 𝑑𝑓

= 𝛥 [
𝜇𝑆

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 +

𝜎𝑆

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡) + 𝑆

′(𝑡)𝑑𝑡] − [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 + 𝑆′(𝑡)

∂𝑓

∂𝑆
] 𝑑𝑡

−
𝜇𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
(𝑑𝑡)𝛼 −

𝜎𝑆

𝛤(1 + 𝛼)

∂𝑓

∂𝑆
𝑑𝐵𝐻(𝑡)

= − [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 + 𝑆′(𝑡)

∂𝑓

∂𝑆
− 𝛥𝑆′(𝑡)] 𝑑𝑡 +

𝜇𝑆

𝛤(1 + 𝛼)
(𝛥 −

∂𝑓

∂𝑆
) (𝑑𝑡)𝛼

+
𝜎𝑆

𝛤(1 + 𝛼)
(𝛥 −

∂𝑓

∂𝑆
)𝑑𝐵𝐻(𝑡)

 (30) 

When 𝛥 =
∂𝑓

∂𝑆
, we can also get the riskless asset portfolio 

𝑑𝛱 = 𝛥𝑑𝑆 − 𝑑𝑓 = − [
∂𝑓

∂𝑡
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1] 𝑑𝑡 (31) 

And again, 𝛱 is riskless, similarly, we can get 

∂𝑓

∂𝑡
+ 𝑟𝑆

∂𝑓

∂𝑆
+

𝜎2𝑆2

𝛤2(1 + 𝛼)

∂2𝑓

∂𝑆2
𝐻𝑡2𝐻−1 − 𝑟𝑓 = 0 (32) 

3.2.  European call option pricing 

Before we proceed to price the European call option, we make the assumptions as below: 

(i) 𝑟 is the riskless rate and is a constant 

(ii) the tax of the stock exchange is free. 

(iii) no arbitrage exist in the market. 

(iv) the price of the stock obeys 

𝑑𝛼𝑆

𝑆
= 𝜇(𝑑𝑡)𝛼 + 𝜎𝑑𝐵𝐻(𝑡). (33) 

Theorem 3. The stock price at the time T follows the formula below. 

When 𝛼 ∈ (0,1]: 
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𝑆𝑇 = Sexp [
𝜇

𝛤(1 + 𝛼)
(𝑇𝛼 − 𝑡𝛼) −

𝜎2

2𝛤2(1 + 𝛼)
(𝑇2𝐻 − 𝑡2𝐻)

+
𝜎

𝛤(1 + 𝛼)
(𝐵𝐻(𝑇) − 𝐵𝐻(𝑡))]

 (34) 

When 𝛼 ∈ (1,2) :  

𝑆𝑇 = Sexp [
𝜇

𝛤(1 + 𝛼)
(𝑇𝛼 − 𝑡𝛼) −

𝜎2

2𝛤2(1 + 𝛼)
(𝑇2𝐻 − 𝑡2𝐻) + ∫ 𝜇

𝑇

𝑡

(𝑆)𝑑𝑆

+
𝜎

𝛤(1 + 𝛼)
(𝐵𝐻(𝑇) − 𝐵𝐻(𝑡))]

  

Proof. (i)When 0 < 𝛼 ≤ 1, according to the formula (25), we can get 

𝑑(ln𝑆) =
𝜇

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 −

𝜎2

𝛤2(1 + 𝛼)
𝐻𝑡2𝐻−1𝑑𝑡 +

𝜎

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡) (35) 

Use formula (4) to integrate it, we can get 

𝑆𝑇

= Sexp [
𝜇

𝛤(1 + 𝛼)
(𝑇𝛼 − 𝑡𝛼) −

𝜎2

2𝛤2(1 + 𝛼)
(𝑇2𝐻 − 𝑡2𝐻) +

𝜎

𝛤(1 + 𝛼)
(𝐵𝐻(𝑇) − 𝐵𝐻(𝑡))] 

(36) 

(ii) When 1 < 𝛼 < 2, according to the formula (25), we can get 

𝑑(ln𝑆) =
𝜇

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 + [

𝑆′

𝑆
−

𝜎2

𝛤2(1 + 𝛼)
𝐻𝑡2𝐻−1] 𝑑𝑡 +

𝜎

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡) (37) 

Among which (
𝑆′

𝑆
) 𝑑𝑡 = 𝑑(ln𝑆) = ln𝑆𝑡+1 − ln𝑆𝑡 = 𝑚(𝑡),𝑚(𝑡)  represents the daily logarithm 

returns of stock S, and 𝑚(𝑡) = 𝜇(𝑡)𝑑𝑡. Thus, 
𝑆′

𝑆
= 𝜇(𝑡). So the formula (37) can be rewritten as 

𝑑(ln𝑆) =
𝜇

𝛤(1 + 𝛼)
(𝑑𝑡)𝛼 + [𝜇(𝑡) −

𝜎2

𝛤2(1 + 𝛼)
𝐻𝑡2𝐻−1] 𝑑𝑡 +

𝜎

𝛤(1 + 𝛼)
𝑑𝐵𝐻(𝑡) (38) 

Similarly, use formula (4) to integrate it, we can get 

𝑆𝑇 = Sexp [
𝜇

𝛤(1 + 𝛼)
(𝑇𝛼 − 𝑡𝛼) −

𝜎2

2𝛤2(1 + 𝛼)
(𝑇2𝐻 − 𝑡2𝐻) + ∫ 𝜇

𝑇

𝑡

(𝑆)𝑑𝑆 +
𝜎

𝛤(1 + 𝛼)
(𝐵𝐻(𝑇) − 𝐵𝐻(𝑡))] (39) 

Now, in the following work, we will derive the option pricing formula based on the risk-neutral 

assumption, so the expected rate of return 𝜇 is equal to the risk-free rate of interest 𝑟. By solving 

equation (26), the pricing formula of European call option is given. 

Theorem 4. The European call option pricing formula is given as below: 

𝑐 = 𝑒−𝑟(𝑇−𝑡)𝐸[max(𝑆𝑇 − 𝐾, 0)]

= 𝑆(𝑡)𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2)

 (40) 

Where 

𝑑1 =
ln
𝑆
𝐾 + 𝑟

(𝑇 − 𝑡) +
𝜎2(𝑇2𝐻 − 𝑡2𝐻)
2𝛤2(1 + 𝛼)

𝜎√𝑇2𝐻 − 𝑡2𝐻

𝛤(1 + 𝛼)

, 𝑑2 =
ln
𝑆
𝐾 + 𝑟

(𝑇 − 𝑡) −
𝜎2(𝑇2𝐻 − 𝑡2𝐻)
2𝛤2(1 + 𝛼)

𝜎√𝑇2𝐻 − 𝑡2𝐻

𝛤(1 + 𝛼)

 (41) 

Proof. Let 𝜉 = ln𝑆,𝑊 = 𝑓𝑒𝛽(𝑡), 𝜂 = 𝜉 + 𝛼(𝑡), 𝜏 = 𝜌(𝑡) . Because 
∂𝑓

∂𝑆
=

∂𝑓

∂𝜉

∂𝜉

∂𝑆
=

1

𝑆

∂𝑓

∂𝜉
, so 𝑆

∂𝑓

∂𝑆
=

∂𝑓

∂𝜉
=

∂𝑓

∂𝜂
= 𝑒−𝛽𝑡

∂𝑊

∂𝜂
, 𝑆2

∂2𝑓

∂𝑆2
=

∂2𝑓

∂𝜉2
−
∂𝑓

∂�̃�
. And as 

∂2𝑓

∂�̃�2
=

∂2𝑓

∂𝜂2
= 𝑒−𝛽(𝑡)

∂2𝑊

∂𝜂2
, so 𝑆2

∂2𝑓

∂𝑆2
= 𝑒−𝛽(𝑡)

∂2𝑊

∂𝜂2
−

𝑒−𝛽(𝑡)
∂𝑊

∂𝜂
. 

Thus, we can rewrite (26) as following: 
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𝐻𝜎2𝑡2𝐻−1

𝛤2(1 + 𝛼)

∂2𝑊

∂𝜂2
+
∂𝑊

∂𝜏
𝜌′(𝑡) + [𝛼′(𝑡) −

𝐻𝜎2𝑡2𝐻−1

𝛤2(1 + 𝛼)
+ 𝑟]

∂𝑊

∂𝜂
− [𝛽′(𝑡) + 𝑟]𝑊 = 0 (42) 

Let 

{
 
 

 
 𝛼′(𝑡) −

𝐻𝜎2𝑡2𝐻−1

𝛤2(1 + 𝛼)
+ 𝑟 = 0

𝛽′(𝑡) + 𝑟 = 0

𝜌′(𝑡) =
−2𝐻𝑡2𝐻−1

𝛤2(1 + 𝛼)

  

We can easily get 

{
 
 

 
 𝛼(𝑡) = 𝑟(𝑇 − 𝑡) −

𝜎2

2𝛤2(1 + 𝛼)
(𝑇2𝐻 − 𝑡2𝐻)

𝛽(𝑡) = 𝑟(𝑇 − 𝑡)

𝜌(𝑡) =
𝑇2𝐻 − 𝑡2𝐻

𝛤2(1 + 𝛼)

  

Thus, we have 

{

∂𝑊

∂𝜏
=
1

2
𝜎2
∂2𝑊

∂𝜂2

𝑊|𝜏=0 = (𝑒𝜂 − 𝐾)+
  

By using the Poisson formula 

𝑊 =
1

𝜎√2𝜋𝜌(𝑡)
∫ (𝑒𝜉 − 𝐾)

+
+∞

−∞

𝑒
−
(𝜂−𝜉)2

2𝜎2𝜌(𝑡)𝑑𝜉 (43) 

We have 

𝑓 = 𝑊𝑒−𝛽(𝑡) = 𝑒−𝑟(𝑇−𝑡)
𝛤(1 + 𝛼)

𝜎√2𝜋(𝑇2𝐻 − 𝑡2𝐻)
∫ (𝑒𝜉 − 𝐾)
𝑒𝜉−𝐾

𝑒
−
(𝜂−𝜉)2𝛤(1+𝛼)

2𝜎2(𝑇2𝐻−𝑡2𝐻)𝑑𝜉

= 𝑒−𝑟(𝑇−𝑡)
𝛤(1 + 𝛼)

𝜎√2𝜋(𝑇2𝐻 − 𝑡2𝐻)
∫ (𝑒𝜉 − 𝐾)
+∞

ln𝐾

𝑒
−
(𝜂−𝜉)2𝛤(1+𝛼)

2𝜎2(𝑇2𝐻−𝑡2𝐻)𝑑𝜉

= 𝑒−𝑟(𝑇−𝑡)
𝛤(1 + 𝛼)

𝜎√2𝜋(𝑇2𝐻 − 𝑡2𝐻)
[∫ 𝑒

𝜉−
(𝜂−𝜉)2𝛤(1+𝛼)

2𝜎2(𝑇2𝐻−𝑡2𝐻)
+∞

ln𝐾

𝑑𝜉 − ∫ 𝐾
+∞

ln𝐾

𝑒
−
(𝜂−𝜉)2𝛤(1+𝛼)

2𝜎2(𝑇2𝐻−𝑡2𝐻)𝑑𝜉]

 (44) 

Now let 

{
 
 
 
 
 

 
 
 
 
 𝑧 = 𝜂 − 𝜉 − 𝑟(𝑇 − 𝑡) +

𝑇2𝐻 − 𝑡2𝐻

2𝛤2(1 + 𝛼)

𝑑1 =
ln
𝑆
𝐾 + 𝑟

(𝑇 − 𝑡) +
𝜎2(𝑇2𝐻 − 𝑡2𝐻)
2𝛤2(1 + 𝛼)

𝜎√𝑇2𝐻 − 𝑡2𝐻

𝛤(1 + 𝛼)

𝑑2 =
ln
𝑆
𝐾 + 𝑟

(𝑇 − 𝑡) −
𝜎2(𝑇2𝐻 − 𝑡2𝐻)
2𝛤2(1 + 𝛼)

𝜎√𝑇2𝐻 − 𝑡2𝐻

𝛤(1 + 𝛼)

  

and 

𝑓 = 𝑒𝜉
1

√2𝜋
∫ 𝑒−

𝑧2

2

𝑑1

−∞

𝑑𝑧 − 𝐾𝑒−𝑟(𝑇−𝑡)∫ 𝑒−
𝑧2

2

𝑑2

−∞

𝑑𝑧 (45) 

Substitute them into formula (44), we can finally get: 
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𝑓(𝑆(𝑡), 𝑡) = 𝑆(𝑡)𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) (46) 

Overall, we obtain the European option pricing fomula by the fractional order stochastic 

differential equation driven by fractional Brownian motion. 

4.  Empirical research based on SSE 50ETF 

In this section, we select one of the SSE 50ETF options to test our model, and let it compared with the 

traditional Black-Scholes model. 

4.1.  Data presentation and preprocessing 

In order to compare the fractional order stochastic differential equation driven by fractional Brownian 

motion with the traditional B-S model, we chose a SSE 50ETF option listed on August 24, 2023 and 

expiring on October 25, 2023, with a strike price of 2.65. The main reason of choosing this dataset is 

that SSE 50ETF is the first exchange option product listed in China, and it is one of the most important 

options, which has research value and practical significance. The mean square error (MSE) is obtained 

by comparing the theoretical price and the real market price under two pricing models, which can be 

used to measure the accuracy of the pricing model. 

Firstly, we need to find out the current price of the underlying assets of the SSE 50ETF. The 

closing prices of SSE 50ETF between August 24,2023 and October 25,2023 are shown in the table 1 

below. 

Table 1. Closing price of the underlying asset of SSE 50ETF (Unit: Yuan) 

Time 𝑆𝑡 Time 𝑆𝑡 Time 𝑆𝑡 
0 2.553 13 2.609 26 2.575 

1 2.563 14 2.601 27 2.559 

2 2.596 15 2.608 28 2.567 

3 2.606 16 2.596 29 2.591 

4 2.599 17 2.610 30 2.566 

5 2.590 18 2.609 31 2.543 

6 2.610 19 2.597 32 2.553 

7 2.658 20 2.572 33 2.543 

8 2.641 21 2.634 34 2.474 

9 2.637 22 2.609 35 2.460 

10 2.611 23 2.592 36 2.441 

11 2.596 24 2.604 37 2.449 

12 2.613 25 2.583 38 2.461 

Where 𝑆𝑡 represents the closing price of the underlying asset of SSE 50ETF. 

Then, we need to calculate the risk-free interest rate. We obtain one-year Shanghai Interbank 

Offered Rate on Shibor’s official website as the reference rate for calculation, which showed in table 2. 

The arithmetic mean is 𝑟‾ = (∑ 𝑟𝑡
38
𝑡=0 )/39 = 2.38551%. Then convert ordinary compound interest 

into continuous compound interest, that is, the risk-free continuous compound interest rate is 𝑟 =
ln(1 + 𝑟‾) = 2.3575%. 

Then, it’s time to calculate the SSE 50ETF’s volatility. The daily logarithmic return is written as 𝑅𝑡, 

where 𝑅𝑡 = ln (
𝑆𝑡

𝑆𝑡−1
). We supose that the first two days of this period have the same daily logarithmic 

return. And the sample variance of daily logarithmic return is defined as 𝜎2 =
1

39−1
∑ (𝑅𝑡 − 𝑢)

238
𝑡=1 =

0.0000794, where 𝑢 = (∑ 𝑅𝑡
39
𝑡=1 )/39 = −0.000840822. Then we can easily get the sample standard 

deviation 𝜎 = 0.008908726, which is the daily volatility of the SSE 50ETF. Since there will be 242 

trading days in 2023, its annual volatility is 𝜎𝑦 = 𝜎 × √242 = 0.138587255. 
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Table 2. Shanghai Interbank Offered Rate (2023.8.24-2023.10.25) 

Time 𝑟𝑡(%) Time 𝑟𝑡(%) Time 𝑟𝑡(%) 

0 2.256 13 2.331 26 2.447 

1 2.257 14 2.339 27 2.452 

2 2.262 15 2.347 28 2.457 

3 2.270 16 2.361 29 2.463 

4 2.276 17 2.374 30 2.466 

5 2.280 18 2.388 31 2.474 

6 2.283 19 2.402 32 2.482 

7 2.285 20 2.409 33 2.490 

8 2.287 21 2.412 34 2.497 

9 2.295 22 2.416 35 2.502 

10 2.304 23 2.432 36 2.504 

11 2.309 24 2.440 37 2.507 

12 2.321 25 2.446 38 2.512 

Besides, we need to calculate Hurst index. By using the R/S analysis approach, the calculation of 

the Hurst index consists of the following steps. First, divide the time series into several equal-length 

subintervals, and calculate the cumulative deviation, range, and standard deviation for each subinterval. 

Then, calculate the rescaled range for each subinterval, which is the ratio of the range to the standard 

deviation. Next, take the logarithm of each subinterval and perform a linear regression. The slope of 

the regression line is the Hurst estimate. In this data, the Hurst index 𝐻 = 0.597666, which means 

that the sequence has a long-dependence memory. 

4.2.  Model results and comparison 

The European call option is priced with B-S model and the fractional order stochastic differential 

equation driven by fractional Brownian motion respectively. Since the fractional derivative 𝛼  and 

Hurst index are not necessarily related, 𝛼 =
1

2
𝐻, 𝛼 = 𝐻, 𝛼 = 2𝐻 are chosen here to price options. The 

model results are shown in table 3. 
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Table 3. Model results and comparison 

Time 𝐶 𝐵 − 𝑆 𝛼 =
1

2
𝐻 𝛼 = 𝐻 𝛼 = 2𝐻 

0 0.0407 0.2585 0.2564 0.2553 0.3066 

1 0.0495 0.2564 0.2542 0.2531 0.3048 

2 0.0652 0.2576 0.2553 0.2542 0.3062 

3 0.0650 0.2554 0.2529 0.2518 0.3042 

4 0.0573 0.2505 0.2480 0.2469 0.2996 

5 0.0491 0.2452 0.2427 0.2416 0.2946 

6 0.0556 0.2441 0.2414 0.2403 0.2936 

7 0.0747 0.2470 0.2441 0.2430 0.2964 

8 0.0668 0.2402 0.2373 0.2362 0.2899 

9 0.0630 0.2352 0.2323 0.2312 0.2851 

10 0.0511 0.2270 0.2240 0.2229 0.2771 

11 0.0457 0.2203 0.2172 0.2161 0.2704 

12 0.0483 0.2180 0.2148 0.2137 0.2681 

13 0.0451 0.2126 0.2094 0.2083 0.2627 

14 0.0401 0.2066 0.2032 0.2021 0.2565 

15 0.0403 0.2025 0.1990 0.1979 0.2523 

16 0.0368 0.1957 0.1920 0.1910 0.2452 

17 0.0393 0.1923 0.1885 0.1874 0.2415 

18 0.0374 0.1867 0.1827 0.1817 0.2355 

19 0.0313 0.1794 0.1753 0.1743 0.2279 

20 0.0223 0.1703 0.1661 0.1651 0.2184 

21 0.0471 0.1728 0.1682 0.1672 0.2198 

22 0.0332 0.1633 0.1586 0.1576 0.2098 

23 0.0271 0.1548 0.1500 0.1490 0.2006 

24 0.0313 0.1500 0.1449 0.1439 0.1947 

25 0.0226 0.1406 0.1354 0.1344 0.1844 

26 0.0111 0.1328 0.1273 0.1264 0.1754 

27 0.0074 0.1238 0.1181 0.1172 0.1651 

28 0.0071 0.1176 0.1116 0.1107 0.1573 

29 0.0099 0.1130 0.1067 0.1059 0.1509 

30 0.0051 0.1022 0.0958 0.0950 0.1383 

31 0.0033 0.0915 0.0848 0.0840 0.1255 

32 0.0030 0.0843 0.0773 0.0766 0.1158 

33 0.0018 0.0744 0.0672 0.0666 0.1032 

34 0.0011 0.0580 0.0508 0.0502 0.0838 

35 0.0008 0.0473 0.0399 0.0394 0.0694 

36 0.0004 0.0356 0.0282 0.0278 0.0535 

37 0.0001 0.0254 0.0183 0.0180 0.0383 

38 0.0001 0.0137 0.0078 0.0076 0.0205 
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Figure 1. Visualization results of different models 

According to the figure 1, we can easily find that: 

(i) Regardless of the traditional pricing model or the newly established model, there are some 

differences between the empirical results and the real value. 

(ii) When 𝛼 = 2𝐻, the order of magnitude of the error is significantly higher than in the other cases. 

(iii) It’s really hard to judge which model has the best effect precisely. 

In order to compare the accuracy of the models more precisely, we use MSE to evaluate it. 

𝑀𝑆𝐸 =
∑ (�̂�𝑖 − 𝐶𝑖)

2𝑛
𝑖=1

𝑛
 (55) 

where 𝐶𝑖 is the real option price in day 𝑖 while �̂�𝑖 is the estimated option price in day 𝑖. 
Their MSEs are calculated respectively, and the results are shown in the table 4 below. 

Table 4. Model results and comparison 

Model MSE Model MSE 

B-S 0.02092517 𝛼 = 𝐻 0.01963943 

𝛼 =
1

2
𝐻 0.01990621 𝛼 = 2𝐻 0.03525325 
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According to the results, we can draw a conclusion that the pricing effect of European option based 

on fractional stochastic differential equation driven by fractional Brownian motion is better than that 

of traditional B-S pricing model. In this data with long-dependence memory, the new model has the 

best simulation effect when 𝛼 = 𝐻, while when 𝛼 = 2𝐻, the effect is relatively poor compared with 

the traditional B-S model. Thus, we can guess the new model has the best effect when 𝛼 = 𝐻. In 

general, European option pricing based on fractional stochastic differential equations driven by 

fractional Brownian motion is feasible and effective. 

5.  Conclusions and future research 

Because the fractional order ordinary differential equations can capture the memory effect in financial 

system, and fractional Brownian motion can better describe stock prices, we established the fractional 

order stochastic differential equation by adding the stochastic process into the fractional ordinary 

differential equation. Based on this equation, we apply the fractional order stochastic differential 

equation driven by fractional Brownian motion to the financial market. We constructed the stock price 

d𝛼𝑆 = 𝜇(𝑆, 𝑡)d𝑡𝛼 + 𝜎(𝑆, 𝑡)d𝐵𝐻(𝑡), and derive the stock price process in the case of 0 < 𝛼 ≤ 1 and 

1 < 𝛼 < 2, respectively, and the European call option pricing formula under the fractional order 

stochastic differential equation driven by fractional Brownian motion. After empirical research, it is 

obvious that the new model has better results, which proves that the given European option pricing by 

fractional stochastic differential equation driven by fractional Brownian motion is feasible and 

effective. 

It would be an interesting work if we improve our model by connecting fractional order stochastic 

differential equation with the mixed fractional jump diffusion environment, which can price the barrier 

options, helping investors grasp the risks related to barrier options more intuitively and effectively. 

References 

[1] Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Transactions of the American Society 

of Civil Engineers 1951,116,770-799.  

[2] Zhang, S; Yong, H; Xiao, H. Option Pricing with Fractional Stochastic Volatilities and Jumps. 

Fractal Fractl 2023,7,680. 

[3] Hassani, H; Yarmohammadi, M; Mashhad LM. Uncovering hidden insights with long-memory 

process detection: An in-depth overview. Risks 2023,11,113. 

[4] Han, Y; Li, Z.; Liu C. Option pricing under the fractional stochastic volatility model. Anziam, 

J.2021,63,123142. 

[5] Garzarelli, R; Cristelli, M; Pompa, G.; Zaccaria, A.; Pietronero, L. Memory effects in stock 

price dynamics: Evidences of technical trading. Sci. Rep. 2014,4,4487. 

[6] Champala, R.; Jamal, S.; Khan, S. Fractional Pricing Models: Transformations to a Heat 

Equation and Lie Symmetries. Fractal Fract 2023,7,632. 

[7] Mandelbrot, B.B.; Van Ness, J. W. Fractional Brownian Motions, Fractional Noises and 

Applications. SLIAM Revive 1968,10422-437. 

[8] Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. 

Jom Wiley & Sons; lnc. 

[9] Necula, C. Option pricing in a fractional Brownian motion environment. SSRN Electronic 

Journal 2002. 

[10] Wang, J.; Yan, Y.; Chen, W.B. Shao, W.; Wang, J; Tang. W.W. Equity-linked security is option 

pricing by fractional Brownian motion. Chaos, Solitons & Fractals 2021,144,110716. 

[11] Liu, Z.B.; Huang. S. Carbon option price forecasting based on modified fractional Brownian 

motion optimized by GARCH model in carbon emission trading. The North American 

Journal of Economics and Finance 2021,55101307. 

[12] Zhao, P., Wang, T., Xiang, K.et al. N-Fold Compound Option Fuzzy Pricing Based on the 

Fractional Brownian Motion . .Fuzzy Syst 2022,24,27672782. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241190

132



[13] Dufera, TT. Fractional Brownian motion in option pricing and dynamic dela hedging: 

Experimental simulations. The North American Journal of Economics and Finance 

2024,69,102017. 

[14] Li, Q; Zhou, Y.L.; Zhao, X.Q.; Ge, X.Y. Fractional Onder Stochastic Differential Equation with 

Application in European Option Pricing. Discrete Dynamics in Nature and Society 2014,1-

12. 

[15] Jin, T., Xia, H. Lookback option pricing models based on the uncertain fractional-order 

differential equation with Caputo type, J Ambient Intell Human Comput 14 2023,6435-6448. 

[16] He, X.J; Lin, S.A fractional Black-&choles model with stochastic volatility and European 

option pricing. Expert Systems with Applications 2021,178,114983. 

[17] Jumarie, G. On the solution of the stochastic differential equation of exponential growth driven 

by fractional Brownian motion. Applied Mathematics Letters: An International Journal of 

Rapid Publication 2005,18,817-826. 

[18] Jumarie, G. On the representation of fractional Brownian motion as an integral with respect 

to(d) . Applied Mathematic Lters2005,18,817-826. 

[19] Deng, M.T. Numerical Solution of Nonlinear Stochastic Equations driven by fractional 

Brownian Motion (in Chinese). Hubei Normal University. 

[20] Biagini F.; Hu Y.Z. et al. Stochastic calculus for fractional Brownian motion and applications. 

London: Springer-Verlag.L.d.2008,329. 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20241190

133


