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Abstract. Geography of projective varieties is one of the fundamental problems in algebraic 

geometry. There are many researches toward the characteristics of Chern number of some 

projective spaces, for example Noether’s inequalities, the theorem of Chang-Lopez, and the 

Miyaoka-Yau inequality. In this paper, we compute the Chern numbers of any smooth complete 

intersection threefold in the product of projective spaces via the standard exact sequences of 

cotangent bundles. Then we obtain linear Chern number inequalities for 
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

 and  
𝑐3(𝑋)

𝑐1
3(𝑋)

 on 

such threefolds under conditions of 𝑑𝑖𝑗 ≥ 4 and 𝑑𝑖𝑗 ≥6 respectively. They can be considered as 

a generalization of the Miyaoka-Yau inequality and an improvement of Yau’s inequality for such 

threefolds. 

Keywords: Chen class, Miyaoka-Yau Inequality, Threefold, Complete Intersection. 

1.  Introduction 

One of the fundamental problems in algebraic geometry is to study the geography of projective varieties, 

i.e., determining which Chern numbers occur for a complex smooth projective variety M. When M is a 

minimal surface of general type, we have Noether’s inequalities [1]:  

𝑝𝑔(𝑀) = ℎ
0(𝑀,𝜔𝑀) 

𝐾𝑀
2 ≥ 2𝑝𝑔(𝑀) − 4. 

This implies 

5𝑐1
2(𝑀) ≥ 𝑐2(𝑀) − 36. 

While on the other hand, we have the Miyaoka-Yau inequality: 

𝑐1
2(𝑀) ≤ 3𝑐2(𝑀). 

Hence 
𝑐2(𝑀)

𝑐1
2(𝑀)

 is bounded. When M is a threefold of general type with ample canonical divisor, Yau’s 

famous inequality in [2] says  
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8𝑐1(𝑀)𝑐2(𝑀) ≤ 3𝑐1
3(𝑀). 

Hunt studied the geography of threefolds in [3]. Later, Chang and Lopez proved in [4] that the region 

described by the Chern ratios (
𝑐1

3(𝑀)

𝑐1(𝑀)𝑐2(𝑀)
,

𝑐3(𝑀)

𝑐1(𝑀)𝑐2(𝑀)
)  of threefolds with ample canonical divisor is 

bounded. Sheng, Xu and Zhang gave the inequalities of Chern numbers of complete intersection 

threefolds with ample canonical divisor in [5]:  

86𝑐1
3(𝑀) ≤ 𝑐3(𝑀) ≤

𝑐1
3(𝑀)

6
. 

The theorem of Chang-Lopez has been generalized to higher dimensional case by Du and Sun in [6]. 

Theorem 1.1. Let X be a nonsingular projective variety of dimension n over an algebraic closed field 

κ with any characteristic. Suppose KX or −KX is ample. If the characteristic of κ is 0 or the characteristic 

of κ is positive and OX(KX)(OX(−KX), respectively) is globally generated, then  

(
𝑐

2,1𝑛−2

𝑐1
𝑛 ,

𝑐
2,2,1𝑛−4

𝑐1
𝑛 , ⋯ ,

𝑐𝑛
𝑐1
𝑛) ∈ 𝔸

𝑝(𝑛) 

is contained in a convex polyhedron in Ap(n) depending on the dimension of X only, where p(n) is the 

partition number and the elements in the parentheses arranged from small to big in terms of the alphabet 

order of the lower indices of the numerators.  

In this paper, we study the inequalities of Chern numbers of complete intersection threefolds in 

products of ℙ1. Throughout this paper, we always let 𝜋𝑖:ℙ
1 × ℙ1 ×⋯× ℙ1⏟          

𝑛+3copies

→
 

ℙ1be the i-th projection, 

and 𝑄𝑖 = 𝜋𝑖
∗(𝑃), where 𝑃 is a point of ℙ1. Take Hi be a general divisor in the linear system | ∑  𝑛+3

𝑡=1 𝑑𝑖𝑡𝑄𝑡|, 
where dit is a positive integer for 1 ≤ i ≤ n,1 ≤ t ≤ n+3. By the Bertini theorem, one can assume that Hi is 

a smooth hypersurface for i = 1, 2, ···, n, and 𝑋 = 𝐻1 ∩ 𝐻2 ∩⋯∩ 𝐻𝑛 is a smooth threefold.  

Our main result is 

Theorem1.2. If 𝑑𝑖𝑗 ≥ 4 for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 3, then we have 
1

2
<
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

<
2

(4𝑛−2)2
+

2

4𝑛−2
+ 1. If  𝑑𝑖𝑗 ≥ 6 for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 3, then 

𝑐1(�̅�)𝑐2(𝑋)

𝑐1
3(𝑋)

−
1

2
<
𝑐3(𝑋)

𝑐1
3(𝑋)

<
7

12
. 

In Section 2, In section 2, we recall the basic definitions and properties of Chern classes. In section 

3, we will compute the Chern numbers of X. In section 4, we study the upper and lower bounds of 
𝑐3(𝑋)

𝑐1
3(𝑋)

and
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

. 

2.  Chern classes 

In this section, we introduce the definition of Chern classes. 

Let M be a smooth projective variety of dimension n. Let 𝐴(𝑀) =⊕𝑖=1
𝑛 𝐴𝑖(𝑀) be the Chow ring of 

M. E is a vector bundle on M of rank r. The Chern class 𝑐𝑖(𝐸) is a cycle in 𝐴𝑖(𝑀), here c0(E) = 1. We 

let 𝑐𝑡(𝐸) = 1+ 𝑐1(𝐸)𝑡 +⋯+ 𝑐𝑟(𝐸)𝑡
𝑟  be the Chern polynomial of E. 

Chern class ci(E) satisfies the properties below: 

(1) If D is a divisor on M and 𝐸 ≅ 𝒪𝑀(𝐷)is a line bundle, then c1(E)=D.  

(2) If f : M′ → M is a morphism of projective varieties, then ci(f
∗E) = f∗ci(E). 

(3) If 0 → E′ → E → E′′ → 0 is a short exact sequence of a vector bundle, then  

𝑐𝑡(𝐸) = 𝑐𝑡(𝐸
′) ⋅ 𝑐𝑡(𝐸

″)

= (1+ 𝑐1(𝐸
′)𝑡 + ⋯+ 𝑐𝑟′(𝐸′)𝑡𝑟

′
)(1+ 𝑐1(𝐸

″)𝑡 + ⋯+ 𝑐𝑟′′(𝐸″)𝑡𝑟
′′
)

= 𝑐𝑟′(𝐸′) ⋅ 𝑐𝑟′′(𝐸′′)𝑡𝑟
′+𝑟′′

+⋯ .
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Assume that rank 𝐸′ = 𝑟′ , rank 𝐸′′ = 𝑟′′ , so that rank E = r′ + r′′. As a result, we have 

𝑐𝑟′+𝑟′′(𝐸) = 𝑐𝑟′(𝐸′)𝑐𝑟′′(𝐸′′). 
(4) Let s be a global section of E. Assume that the zero set Z(s) of s satisfies that dim Z(s) =dimM − 

r, then 𝑐𝑟(𝐸) = 𝑍(𝑠) ∈ 𝐴
𝑟(𝑀). 

We call 𝑐𝑖(𝑀) = 𝑐𝑖(𝑇𝑀) the i-th Chern class of M.  

3.  Chern numbers of complete intersection three- folds in products of projective spaces 

In this section, we compute the Chern numbers of X. 

𝑀 = ℙ1 × ℙ1 ×⋯× ℙ1⏟          
𝑛+3

 

then one sees 

𝑐𝑡(𝑀) = 𝑐𝑡(𝑇𝑀) = 𝑐𝑡(𝜋1
∗𝑇

ℙ1 ⊕⋯⊕𝜋𝑛+3
∗ 𝑇

ℙ1)

= (1+ 2𝑄1𝑡)(1 + 2𝑄2𝑡)⋯ (1+ 2𝑄𝑛+3𝑡).
 

From the standard exact sequence 

0 ⟶𝒪𝐻1
(−𝐻1) ⟶ Ω𝑀|𝐻1

⟶ Ω𝐻1
⟶ 0, 

after taking duality, we have 

0 ⟶ 𝑇𝐻1
⟶ 𝑇𝑀|𝐻1

⟶ 𝒪𝐻1
(𝐻1) ⟶ 0. 

Hence, we have  

𝑐𝑡(𝐻1) =
𝑐𝑡(𝑇𝑀|𝐻1

)

𝑐𝑡(𝒪𝐻1
(𝐻1))

=
(1+ 2𝑄1𝑡)(1 + 2𝑄2𝑡)⋯ (1+ 2𝑄𝑛+3𝑡)|𝐻1

(1+𝐻1𝑡)|𝐻1

.

 

From the exact sequence  

0 ⟶ 𝑇𝐻1∩𝐻2
⟶ 𝑇𝐻1

|𝐻1
∩ 𝐻2 ⟶ 𝒪𝐻1∩𝐻2

(𝐻2) ⟶ 0, 

We obtain 

𝑐𝑡(𝐻1 ∩ 𝐻2) =
(1+ 2𝑄1𝑡)⋯(1+ 2𝑄𝑛+3𝑡)|𝐻1∩𝐻2

(1 +𝐻1𝑡)(1 +𝐻2𝑡)|𝐻1∩𝐻2

 

By repeating the procedure above, it can be obtained that 

𝑐𝑡(𝑋) = 𝑐𝑡(𝐻1 ∩⋯∩ 𝐻𝑛) =
(1+ 2𝑄1𝑡)(1 + 2𝑄2𝑡)⋯ (1+ 2𝑄𝑛+3𝑡)|𝑋
(1+𝐻1𝑡)(1+𝐻2𝑡)⋯ (1+𝐻𝑛𝑡)|𝑋

 

It follows that 

(1+ 𝑐1(𝑋)𝑡 + 𝑐2(𝑋)𝑡
2 + 𝑐3(𝑋)𝑡

3)(1+𝐻1𝑡)(1+𝐻2𝑡)⋯(1 +𝐻𝑛𝑡)|𝑋
= (1+ 2𝑄1𝑡)(1 + 2𝑄2𝑡)⋯ (1+ 2𝑄𝑛+3𝑡)|𝑋.

 

By considering the coefficient of t, we can get 

𝑐1(𝑋) + 𝐻1|𝑋 +𝐻2|𝑋 +⋯+𝐻𝑛|𝑋
= 2𝑄1|𝑋 + 2𝑄2|𝑋 +⋯+ 2𝑄𝑛+3|𝑋.

 

Thus, 
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𝑐1(𝑋) = (2𝑄1 + 2𝑄2 +⋯+ 2𝑄𝑛+3 −𝐻1 −𝐻2 −⋯−𝐻𝑛)|𝑋

=∑  

𝑛+3

𝑖=1

(2 − 𝑑1𝑖 − 𝑑2𝑖 −⋯− 𝑑𝑛𝑖)𝑄𝑖|𝑋.
(1) 

As for the coefficient of t2, we see that  

𝑐2(𝑋) + 𝑐1(𝑋)(𝐻1 +𝐻2 +⋯+𝐻𝑛)|𝑋 + ∑  

1≤𝑖<𝑗≤𝑛

𝐻𝑖𝐻𝑗|𝑋

= 4 ∑  

1≤𝑖<𝑗≤𝑛+3

𝑄𝑖𝑄𝑗|𝑋.
 

Since 

𝐻1 +𝐻2 +⋯+𝐻𝑛

=∑ 

𝑛

𝑖=1

𝑑𝑖1𝑄1 +∑ 

𝑛

𝑖=1

𝑑𝑖2𝑄2 +⋯+∑ 

𝑛

𝑖=1

𝑑𝑖,𝑛+3𝑄𝑛+3,
 

We obtain 

𝑐1(𝑋)(𝐻1 +𝐻2 +⋯+𝐻𝑛)

= ∑  

1≤𝑖,𝑗≤𝑛+3

(2− 𝑑1𝑖 − 𝑑2𝑖 −⋯− 𝑑𝑛𝑖)∑  

𝑛

𝑘=1

𝑑𝑘𝑗𝑄𝑖𝑄𝑗 .
 

Simple computations show that 

𝐻𝑖𝐻𝑗 = (𝑑𝑖1𝑄1 + 𝑑𝑖2𝑄2 +⋯+ 𝑑𝑖,𝑛+3𝑄𝑛+3)(𝑑𝑗1𝑄1 + 𝑑𝑗2𝑄2 +⋯+ 𝑑𝑗,𝑛+3𝑄𝑛+3)

= ∑  

1≤𝑘,𝑙≤𝑛+3

𝑑𝑖𝑘𝑑𝑗𝑙𝑄𝑘𝑄𝑙
 

Hence, we have  

𝑐2(𝑋) = 4 ∑  

1≤𝑖<𝑗≤𝑛+3

𝑄𝑖𝑄𝑗|𝑋 − ∑  

1≤𝑘,𝑙≤𝑛+3

𝑑𝑖𝑘𝑑𝑗𝑙𝑄𝑘𝑄𝑙|𝑋 −

∑  

1≤𝑖,𝑗≤𝑛+3

(2− 𝑑1𝑖 − 𝑑2𝑖|𝑋 −⋯− 𝑑𝑛𝑖)∑  

𝑛

𝑘=1

𝑑𝑘𝑗𝑄𝑖𝑄𝑗|𝑋.

(2) 

Now considering the coefficient of t3, we get 

𝑐3(𝑋) + 𝑐2(𝑋)∑  

𝑛

𝑖=1

𝐻𝑖|𝑋 + 𝑐1(𝑋) ∑  

1≤𝑖<𝑗≤𝑛

𝐻𝑖𝐻𝑗|𝑋 +

∑  

1≤𝑖<𝑗<𝑘≤𝑛

𝐻𝑖𝐻𝑗𝐻𝑘|𝑋 = 8( ∑  

1≤𝑖<𝑗<𝑘≤𝑛+3

𝑄𝑖𝑄𝑗𝑄𝑘)|𝑋.

 

This implies 
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𝑐3(𝑋) = ∑  

𝑖1,⋯,𝑖𝑛,𝑖,𝑗,𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛(
4

3
−

1

6
∑  

1≤𝑟,𝑠,𝑡≤𝑛,(𝑟−𝑠)(𝑠−𝑡)(𝑡−𝑟)≠0

𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑡𝑘

−
1

2
(2−∑ 

𝑛

𝑖=1

𝑑𝑡𝑖) ∑  

1≤𝑠,𝑡≤𝑛,𝑠≠𝑡

𝑑𝑡𝑗𝑑𝑠𝑘 − [2−
1

2
∑  

1≤𝑠,𝑡≤𝑛,𝑠≠𝑡

𝑑𝑡𝑖𝑑𝑠𝑗 −

(2 −∑ 

𝑛

𝑡=1

𝑑𝑡𝑖)∑  

𝑛

𝑡=1

𝑑𝑡𝑗]∑  

𝑛

𝑡=1

𝑑𝑡𝑘)

(3) 

where 𝑖1,⋯ , 𝑖𝑛, 𝑖, 𝑗, 𝑘 take all the arrangements of 1,2,⋯ , 𝑛 + 3. 
By (1), (2), (3), we can have 

𝑐1
3(𝑋) = ∑  

𝑖1,⋯,𝑖𝑛,𝑖,𝑗,𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛 (2−∑ 

𝑛

𝑡=1

𝑑𝑡𝑖)(2−∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑗)(2−∑  

𝑛

𝑡=1

𝑑𝑡𝑘) , (4) 

𝑐1(𝑋)𝑐2(𝑋) = ∑  

𝑖1,⋯,𝑖𝑛,𝑖,𝑗,𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛[2−
1

2
∑  

1≤𝑡,𝑠≤𝑛,𝑡≠𝑠

𝑑𝑡𝑖𝑑𝑠𝑗

−(2−∑ 

𝑛

𝑡=1

𝑑𝑡𝑖)∑  

𝑛

𝑡=1

𝑑𝑡𝑗](2 −∑ 

𝑛

𝑡=1

𝑑𝑡𝑘)

(5) 

4.  Inequalities of Chern numbers 

In this section, we estimate the upper and lower bounds for 
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

 and 
𝑐3(𝑋)

𝑐1
3(𝑋)
 respectively. Let 

𝐴𝑖 = (∑ 

𝑛

𝑡=1

𝑑𝑡𝑖) − 2, (6) 

𝐵𝑖𝑗 = ∑  

1≤𝑠,𝑡≤𝑛,𝑠≠𝑡

𝑑𝑡𝑖𝑑𝑠𝑗 , (7) 

𝐶𝑖𝑗𝑘 =∑ 𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑡𝑘
1≤𝑟,𝑠,𝑡≤𝑛,(𝑟−𝑠)(𝑠−𝑡)(𝑡−𝑟)≠0

, (8) 

We have  

−𝑐1
3(𝑋) = ∑  

𝑖1,⋯,𝑖𝑛,𝑖,𝑗,𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛𝐴𝑖𝐴𝑗𝐴𝑘 ,

−𝑐1(𝑋)𝑐2(𝑋) = ∑  

𝑖1,⋯,𝑖𝑛,𝑖,𝑗,𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛 (2−
1

2
𝐵𝑖𝑗 + 𝐴𝑖(𝐴𝑗 + 2))𝐴𝑘 ,

−𝑐3(𝑋) = ∑  

𝑖1,⋯,𝑖𝑛,𝑖,𝑗,𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛 [2−
1

2
𝐵𝑖𝑗 + 𝐴𝑖(𝐴𝑗 + 2)] (𝐴𝑘 + 2)

−
1

2
𝐴𝑖𝐵𝑗𝑘 +

1

6
𝐶𝑖𝑗𝑘 −

4

3
.

(9) 

4.1.  Inequalities of 
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

 

In order to estimate 
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

, we need to estimate 
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𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛(2−
1
2
𝐵𝑖𝑗 + 𝐴𝑖(𝐴𝑗 + 2))𝐴𝑘

𝑑1𝑖1 ⋯𝑑𝑛𝑖𝑛𝐴𝑖𝐴𝑗𝐴𝑘
=

2−
1
2
𝐵𝑖𝑗 + 𝐴𝑖(𝐴𝑗 + 2)

𝐴𝑖𝐴𝑗
 

for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 3 and 𝑖 ≠ 𝑗.   
Lemma 1.  If d𝑖𝑗 ≥ 4 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 3, 𝐵𝑖𝑗 < 𝐴𝑖𝐴𝑗. 

Proof. If d𝑖𝑗 ≥ 4, we have  

∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑖𝑗 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖 − 2∑ 

𝑛

𝑡=1

𝑑𝑖𝑗 + 4

=
1

2
∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖 +
1

2
∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗 − 2∑ 

𝑛

𝑡=1

𝑑𝑖𝑗 + 4

=∑ 

𝑛

𝑡=1

(
1

2
𝑑𝑡𝑗 − 2)𝑑𝑡𝑖 +∑ 

𝑛

𝑡=1

(
1

2
𝑑𝑡𝑖 − 2)𝑑𝑡𝑗 + 4 ≥ 4.

 

Since 

𝐴𝑖𝐴𝑗 = (∑  

𝑛

𝑡=1

𝑑𝑡𝑖 − 2)(∑  

𝑛

𝑡=1

𝑑𝑖𝑗 − 2)

=∑  

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑖𝑗 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖 − 2∑ 

𝑛

𝑡=1

𝑑𝑖𝑗 + 4

= 𝐵𝑖𝑗 +∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗 − 2(𝐴𝑖 + 2) − 2(𝐴𝑗 + 2) + 4

= 𝐵𝑖𝑗 − 2𝐴𝑖 − 2𝐴𝑗 − 4+∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗

 

One sees that  

𝐴𝑖𝐴𝑗 ≥ 𝐵𝑖𝑗 + 4 > 𝐵𝑖𝑗 . 

Lemma 2. When d𝑖𝑗 ≥ 4 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 3 , then we have 
1

2
<

2−
1

2
𝐵𝑖𝑗+𝐴𝑖(𝐴𝑗+2)

𝐴𝑖𝐴𝑗
<

2

(4𝑛−2)2
+

2

4𝑛−2
+ 1. 

Proof. As d𝑖𝑗 ≥ 4, one sees 𝐴𝑗 ≥ 4𝑛 − 2, which means 
1

𝐴𝑗
≤

1

4𝑛−2
. We can also have 

1

𝐴𝑖
> 0. By 

Lemma 1, we have  

2−
1
2
𝐵𝑖𝑗 + 𝐴𝑖(𝐴𝑗 + 2)

𝐴𝑖𝐴𝑗
=

2

𝐴𝑖𝐴𝑗
−

1
2
𝐵𝑖𝑗

𝐴𝑖𝐴𝑗
+

2

𝐴𝑗
+ 1 > 1−

1

2
=

1

2
 

On the other hand, we have  

2

𝐴𝑖𝐴𝑗
−

1
2
𝐵𝑖𝑗

𝐴𝑖𝐴𝑗
+

2

𝐴𝑗
+ 1 <

2

𝐴𝑖𝐴𝑗
+

2

𝐴𝑗
+ 1 <

2

(4𝑛 − 2)2
+

2

4𝑛 − 2
+ 1 (10) 

Theorem 4.1. If d𝑖𝑗 ≥ 4 for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛 + 3, then we have 
1

2
 < 

𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

<
2

(4𝑛−2)2
+

2

4𝑛−2
+ 1. 
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Proof. The desired conclusion follows from Lemma 2. 

4.2.  Inequalities of 
𝑐3(𝑋)

𝑐1
3(𝑋)

  

In order to estimate the range of 
𝑐3(𝑋)

𝑐1
3(𝑋)

, we need to estimate the range of  

(2−
1
2
𝐵𝑖𝑗 + 𝐴𝑖𝐴𝑗 + 2𝐴𝑖) (𝐴𝑘 + 2) −

1
2
𝐴𝑖𝐵𝑗𝑘 +

1
6
𝐶𝑖𝑗𝑘 −

4
3

𝐴𝑖𝐴𝑗𝐴𝑘
 

Lemma 3.  If d𝑖𝑗 ≥ 6 for 𝑎𝑛𝑦 𝑖, 𝑗, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 𝐴𝑖𝐴𝑗𝐴𝑘 > 𝐶𝑖𝑗𝑘 . 

Proof. One sees that  

𝐴𝑖𝐴𝑗𝐴𝑘 = (∑  

𝑛

𝑡=1

𝑑𝑡𝑖 − 2)(∑  

𝑛

𝑡=1

𝑑𝑡𝑗 − 2)(∑  

𝑛

𝑡=1

𝑑𝑡𝑘 − 2)

=∑  

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑗∑ 

𝑛

𝑡=1

𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑗 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗∑ 

𝑛

𝑡=1

𝑑𝑡𝑘

−2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑘 + 4∑ 

𝑛

𝑡=1

(𝑑𝑡𝑖 + 𝑑𝑡𝑗 + 𝑑𝑡𝑘) − 8,

 

and  

∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑗∑ 

𝑛

𝑡=1

𝑑𝑡𝑘

= ∑  

1≤𝑟,𝑠,𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑡𝑘

= 𝐶𝑖𝑗𝑘 + ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑟𝑗𝑑𝑡𝑘 + ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑡𝑗𝑑𝑡𝑘

+ ∑  

1≤𝑟≠𝑠≤𝑛

𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑟𝑘 +∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 .

 

We can further have that 

𝐴𝑖𝐴𝑗𝐴𝑘

= 𝐶𝑖𝑗𝑘 + ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑟𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗∑ 

𝑛

𝑡=1

𝑑𝑡𝑘

+ ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑘

+ ∑  

1≤𝑟≠𝑠≤𝑛

𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑟𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑗 +∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 .

 

In order to see the relationship between 𝐴𝑖𝐴𝑗𝐴𝑘 and 𝐶𝑖𝑗𝑘, we need to cal- culate the value of  
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∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑟𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗∑ 

𝑛

𝑡=1

𝑑𝑡𝑘 + ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑡𝑗𝑑𝑡𝑘

−2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑘 + ∑  

1≤𝑟≠𝑠≤𝑛

𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑟𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖∑ 

𝑛

𝑡=1

𝑑𝑡𝑗.

 

One sees that  

∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑟𝑗𝑑𝑡𝑘 − 2∑𝑑𝑡𝑗∑𝑑𝑡𝑘

= ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑟𝑗𝑑𝑡𝑘 − 2 ∑  

1≤𝑟,𝑡≤𝑛

𝑑𝑟𝑗𝑑𝑡𝑘

= ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑟𝑗𝑑𝑡𝑘 − 2 ∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗𝑑𝑡𝑘

= ∑  

1≤𝑟≠𝑡≤𝑛

(𝑑𝑟𝑖 − 2)𝑑𝑟𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗𝑑𝑡𝑘 > −2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗𝑑𝑡𝑘 .

 

Similarly, we can obtain that  

∑  

1≤𝑟≠𝑡≤𝑛

𝑑𝑟𝑖𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑𝑑𝑡𝑖∑𝑑𝑡𝑘 > −2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑘 

and 

∑  

1≤𝑟≠𝑠≤𝑛

𝑑𝑟𝑖𝑑𝑠𝑗𝑑𝑟𝑘 − 2∑𝑑𝑡𝑖∑𝑑𝑡𝑗 > −2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗. 

By (20), (21) and (22), we can have that 

𝐴𝑖𝐴𝑗𝐴𝑘 > 𝐶𝑖𝑗𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗 +∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 + 4∑ 

𝑛

𝑡=1

(𝑑𝑡𝑖 + 𝑑𝑡𝑗

+ 𝑑𝑡𝑘) − 8 

One sees that 

∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗

= (
1

3
∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑗𝑑𝑡𝑘) + (
1

3
∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑘)

+(
1

3
∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗𝑑𝑡𝑘 − 2∑ 

𝑛

𝑡=1

𝑑𝑡𝑖𝑑𝑡𝑗)

=∑  

𝑛

𝑡=1

(
1

3
𝑑𝑡𝑖 − 2)𝑑𝑡𝑗𝑑𝑡𝑘 +∑ 

𝑛

𝑡=1

(
1

3
𝑑𝑡𝑗 − 2)𝑑𝑡𝑖𝑑𝑡𝑘 +∑ 

𝑛

𝑡=1

(
1

3
𝑑𝑡𝑘 − 2) 𝑑𝑡𝑖𝑑𝑡𝑗.

 

If 𝑑𝑖𝑗 ≥ 6, then we can have that 
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∑ 

𝑛

𝑡=1

(
1

3
𝑑𝑡𝑖 − 2) 𝑑𝑡𝑗𝑑𝑡𝑘 +∑ 

𝑛

𝑡=1

(
1

3
𝑑𝑡𝑗 − 2)𝑑𝑡𝑖𝑑𝑡𝑘 +∑ 

𝑛

𝑡=1

(
1

3
𝑑𝑡𝑘 − 2)𝑑𝑡𝑖𝑑𝑡𝑗 ≥ 0. 

This implies that  

𝐴𝑖𝐴𝑗𝐴𝑘 > 𝐶𝑖𝑗𝑘 . 

As a result, we have  

0 <
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘
< 1. 

Lemma 4. If 𝑑𝑖𝑗 ≥ 6 for any i, j, then we have  

8
3
−

1
2
𝐵𝑖𝑗 + 𝐴𝑖𝐴𝑗 + 2𝐴𝑖 −

1
2
𝐴𝑖𝐵𝑗𝑘 +

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘
>

1
2
𝐵𝑗𝑘

𝐴𝑗𝐴𝑘
−

1

2
. 

Proof. One sees that 

8
3
−

1
2
𝐵𝑖𝑗 + 𝐴𝑖𝐴𝑗 + 2𝐴𝑖 −

1
2
𝐴𝑖𝐵𝑗𝑘 +

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘

=

8
3
−

1
2
𝐵𝑖𝑗 + 𝐴𝑖𝐴𝑗 + 2𝐴𝑖 +

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘
−

1
2
𝐵𝑗𝑘

𝐴𝑗𝐴𝑘
.

 

By Lemma 1, we have  

𝐵𝑖𝑗 < 𝐴𝑖𝐴𝑗, 𝐵𝑗𝑘 < 𝐴𝑗𝐴𝑘 . 

Hence, we have  
8
3
−

1
2
𝐵𝑖𝑗 + 𝐴𝑖𝐴𝑗 + 2𝐴𝑖 −

1
2
𝐴𝑖𝐵𝑗𝑘 +

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘
>

8
3
+

1
2
𝐵𝑖𝑗 + 2𝐴𝑖 −

1
2
𝐴𝑖𝐵𝑗𝑘 +

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘
> 0.

 

This implies  

8
3
−

1
2
𝐵𝑖𝑗 + 𝐴𝑖𝐴𝑗 + 2𝐴𝑖 −

1
2
𝐴𝑖𝐵𝑗𝑘 +

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘
>

1
2
𝐵𝑗𝑘

𝐴𝑗𝐴𝑘
−

1

2
. (11) 

Theorem 4.2. If 𝑑𝑖𝑗 ≥ 6 for any i, j, then we have 
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

−
1

2
<
𝑐3(𝑋)

𝑐1
3(𝑋)

<
7

12
. 

Proof. According to Lemma 4, we have that −𝑐3(𝑋) > −𝑐1(𝑋)𝑐2(𝑋) −
1

2
𝑐1

3(𝑋) , i.e., 
𝑐3(𝑋)

𝑐1
3(𝑋)

>

𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

−
1

2
. 

Now, we consider the upper bound of 
𝑐3(𝑋)

𝑐1
3(𝑋)

 

Because 𝐴𝑖 = ∑  𝑛
𝑡=1 𝑑𝑡𝑖 − 2 ≥ 6𝑛 − 2, we have  
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8
3

𝐴𝑖𝐴𝑗𝐴𝑘
+

1

𝐴𝑘
+

2

𝐴𝑗𝐴𝑘
+

1
6
𝐶𝑖𝑗𝑘

𝐴𝑖𝐴𝑗𝐴𝑘

<

8
3

(6𝑛 − 2)3
+

1

6𝑛 − 2
+

2

(6𝑛 − 2)2
+

1

6

≤
8

3
+

1

4
+

2

16
+

1

6

=
1

24
+

1

4
+

1

8
+

1

6

=
7

12
.

(12) 

5.  Conclusions 

In this paper, we take 𝑀 = ℙ1 × ℙ1 ×⋯× ℙ1⏟          
𝑛+3

 as an example to calculate the Chern numbers of complete 

intersection three-folds in products of projective spaces. Thus, in our conclusion, we get its Chern 

number and the inequalities that it will satisfy: 

If 𝑑𝑖𝑗 ≥ 4  for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 3,  then we have 
1

2
<
𝑐1(𝑋)𝑐2(𝑋)

𝑐1
3(𝑋)

<
2

(4𝑛−2)2
+

2

4𝑛−2
+ 1 . If  

𝑑𝑖𝑗 ≥ 6 for any 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 3, then 
𝑐1(�̅�)𝑐2(𝑋)

𝑐1
3(𝑋)

−
1

2
<
𝑐3(𝑋)

𝑐1
3(𝑋)

<
7

12
. 

However, those conclusions build up on an important assumption, which is the value of 𝑑𝑖𝑗. This 

means that there is still room for exploration and explanation of those results when applying other values 

of 𝑑𝑖𝑗.  

As for the future meaning of research into this field, it may help in the field of physics. For instance, 

Miyaoka-Yau type inequalities are widely applied to the quantum mechanics and field theory, so we 

believe researches like this can be applied to more different conditions. 
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