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Abstract. Geography of projective varieties is one of the fundamental problems in algebraic
geometry. There are many researches toward the characteristics of Chern number of some
projective spaces, for example Noether’s inequalities, the theorem of Chang-Lopez, and the
Miyaoka-Yau inequality. In this paper, we compute the Chern numbers of any smooth complete
intersection threefold in the product of projective spaces via the standard exact sequences of

cotangent bundles. Then we obtain linear Chern number inequalities for C’(?(C;)(X) and ;g; on
1 1

such threefolds under conditions of d;; > 4 and d;; =6 respectively. They can be considered as
a generalization of the Miyaoka-Yau inequality and an improvement of Yau’s inequality for such
threefolds.
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1. Introduction

One of the fundamental problems in algebraic geometry is to study the geography of projective varieties,
i.e., determining which Chern numbers occur for a complex smooth projective variety M. When M is a
minimal surface of general type, we have Noether’s inequalities [1]:

pg(M) = 1" (M, wy)
Kiy = 2py,(M) — 4.
This implies
5¢2(M) = ¢,(M) — 36.
While on the other hand, we have the Miyaoka-Yau inequality:
c}(M) < 3c,(M).

c2(M)
c7 (M)
famous inequality in [2] says

Hence is bounded. When M is a threefold of general type with ample canonical divisor, Yau’s
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8c; (M)cy(M) < 3¢ (M).

Hunt studied the geography of threefolds in [3]. Later, Chang and Lopez proved in [4] that the region
cj () c3(M)
c;(M)c2(M)” ¢ (M)cy(M)
bounded. Sheng, Xu and Zhang gave the inequalities of Chern numbers of complete intersection

threefolds with ample canonical divisor in [5]:

described by the Chern ratios ( ) of threefolds with ample canonical divisor is

3
ci (M
86¢; (M) < c3(M) < - (6 )
The theorem of Chang-Lopez has been generalized to higher dimensional case by Du and Sun in [6].
Theorem 1.1. Let X be a nonsingular projective variety of dimension n over an algebraic closed field
K with any characteristic. Suppose Kx or —Kx is ample. If the characteristic of x is 0 or the characteristic
of k is positive and Ox(Kx)(Ox(—KXx), respectively) is globally generated, then

C, n-2 C n—4 C
2,1 22,1 n

T — —n,"',_n) EAp(n)

G 1

ct

is contained in a convex polyhedron in AP™ depending on the dimension of X only, where p(n) is the
partition number and the elements in the parentheses arranged from small to big in terms of the alphabet
order of the lower indices of the numerators.

In this paper, we study the inequalities of Chern numbers of complete intersection threefolds in
products of P!. Throughout this paper, we always let ;: P/ x P! x --- x P! - P’be the i-th projection,

n+3copies

and Q; = 7} (P), where P isapoint of P’. Take H; be a general divisor in the linear system | X747 d;,Q,|,
where diis a positive integer for 1 <i<n,1 <t<n+3. By the Bertini theorem, one can assume that H; is
a smooth hypersurface fori=1, 2, --;n,and X = H; N H, N ---N H, is a smooth threefold.

Our main result is

ci(X)ea(X) 2

, . 1
Theoreml1.2. Ifd;j = 4forany I <i<n,/ <j<n+ 3 then we havez < 00 ) +
2 . . C[(}?)Cz(X) 1 C3(X) 7
4n_—2+1|f dij26foranyISlSn,1S]Sn+3,thenw—§ m IEs

In Section 2, In section 2, we recall the basic definitions and properties of Chern classes. In section
3, we will compute the Chern numbers of X. In section 4, we study the upper and lower bounds of
c3(X) c1(X)ex(X)
cj () cj(x)

2. Chern classes
In this section, we introduce the definition of Chern classes.

Let M be a smooth projective variety of dimension n. Let A(M) =@ ; A'(M) be the Chow ring of
M. E is a vector bundle on M of rank r. The Chern class c;(E) is a cycle in A{(M), here co(E) = 1. We
letc,(E) =1+ c;(E)t+ -+ c,.(E)t" bethe Chern polynomial of E.

Chern class ¢;(E) satisfies the properties below:

(1) If Disadivisor on M and E = O,,(D)is a line bundle, then c,(E)=D.
(2 Iff: M —>Misa morphism of projective varieties, then ¢,(f°E) = f*c;(E).
B)Ifo— E' - E—E — 0isa short exact sequence of a vector bundle, then
ce(E) = ¢ (E) - ce(E") ’ )
=+ E)t+ -+ (EN")Y1+c(ENt+ -+ (ENT)
= ¢, (E) - ¢ (BT + -,
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Assume that rank E' =7, rank E'=7r", so that rank E = ' + r". As a result, we have
¢y (E) = ¢ (E)c,(E).

(4) Let s be a global section of E. Assume that the zero set Z(s) of s satisfies that dim Z(s) =dimM —
r,then c,.(E) = Z(s) € A" (M).

We call ¢;(M) = c;(Ty) the i-th Chern class of M.

3. Chern numbers of complete intersection three- folds in products of projective spaces
In this section, we compute the Chern numbers of X.

M =P!' xP! x .- x P!

n+3

then one sees
ce(M) = c(Ty) = ¢ (o1 @ = D g3 o)
= (1+2Q11)(1 +205t) -+ (1 + 2Qn43t).
From the standard exact sequence
0 — Oy, (=H1) = Qylu, = Qu, — 0,
after taking duality, we have
0 — Ty, = Tylu, — On,(H) — 0.
Hence, we have
ct(Tuln,)
ce(H) = — =
¢t (On, (H1))
(120,00 +2058) - (1 + 2Qn430) |n,
(1 + Ht)|n, '

From the exact sequence
0 — TH]ﬂHz - TH] |H1 N H2 - OHlﬂHz(Hz) - O'
We obtain

(142Q1t) - (1 + 2Qn438) |1, nH,
(I+H ) + Hy)|u,nm,

c(HyNnHy) =

By repeating the procedure above, it can be obtained that

(1 +20:)(1 +2Q0) -+ (1 + 2Qn43t) |x

ce(X) =c(HiN--NHy) =

It follows that
1+ 0t + (X2 + O + Hit)(1 + Hyt) - (1 + Hpt)|x
= (1421 +2Q:) -+ (1 +2Qu438) |-
By considering the coefficient of t, we can get

ci(X) + H|x + Hy|x +--+ Hylx
=2Q;|x +20Q2|x + -+ 2Qn43lx-

Thus,

10
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(X)) =QQ, +2Q,+ - +2Qp43 —H —Hy — - — Hp)|x
n+3
)
= z 2 —dy; —dy — - — dp)Qilx-
i=1
As for the coefficient of t2, we see that
00 + GO+ Hy+ 4 Bl + Y Hillly
1si<jsn
=4 > Q.
1<i<jsn+3
Since
Hl +H2++Hn
n n n
= Z d;; Q) + Z dppQy + -+ Z dint+3Qn+3,
i=1 i=1 i=1
We obtain
Cl(X)(Hl + H2 + -+ Hn)
n
= z Q—dy—dy—— dni)Z d;Q;Q;.
1<i,jsn+3 k=1
Simple computations show that
HiH; = (d;j Q) + dppQy + -+ di n43Qn43)(dj1 Q1 + djpQr + - + dj n430n43)
= Z dirdj; Qi Q
1<k,l=n+3
Hence, we have
(X)) =4 Z QiQjlx — Z dirdjQrQilx —
15i<j=n+3 1sk,l=n+3
n @)
Z 2 —dy;— dyilx = —dn) Z dijQiQjlx-
1<i,jsn+3 k=1

Now considering the coefficient of t3, we get

3 (X) + cy(X) Z HyX + o1 (X) Z HiHj|x +
i=1

l<i<jsn

D HHHA =5 ) 0@l

1si<j<ks<n 1<i<j<ks<n+3

This implies

11
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4
aX) = z dlil"'dnin(g_g

<s,tsn,s#t

1gr,s,t<n,(r-s)(s—t)(t—r)=0

1<s,tsn,s#t

n
1 1
Ae-ga) T wml Y oa
l
n

e-) du)i dt,-]i dtk)

t=1

t=1 t=1

where iy, -, ip,I,J, k take all the arrangements of 1,2, ---,n + 3.
By (1), (2), (3), we can have

i (X) =

il:""in.i.j.k

1
QWG = D diy e d, 23

n

nintj K

1<st,ssn,t#s

-2 —zn: dti)tzz; d:]1(2 —Z dix)

t=1

4. Inequalities of Chern numbers

In this section, we estimate the upper and lower bounds for

(5

We have

— e = )

(0= ) digydu, |2

4.1. Inequalities of

In order to estimate

t=1

Bij =

c1(X)ea(X)

and &%

ci(x)

dtl) - 2,

ci(x)

diidsj,

1<s,tsn,s#t

Cijk = Z
1<r,s,t<n,(r—s)(s—t)(t—-r)#0

dridsjdtk ’

—cj(X) = Z dji;, - dni, AiAjAg,

i]p""in'i.j.k

ipesinljk

i1, jik
1 1
c(X)ex(X)
cj (X)
M, we need to estimate
c;(X)

12

2

Cijik —

4
3

dri dsj dtk

idsj -

n n
dli] "'dnin <2 —Z dti) (2—2 dtij) (2— dtk)'
t=1 t=1

t=1

diidsj

respectively. Let

I
dyi, - dpi, (2 — 5By + A;(4; + 2)>Ak,

1
— =B + Ai(4; + 2)] (Ax +2)

€)

)

(5)

(6)

(M

®)

&)
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1
dyj, - dpi, 2 — Bl]+A (4j +2))A, 2—§Bij+Al-(Aj+2)

dyi, Ay, AA A A4

forany1 <i,j<n+3andi #j.
Lemmal. Ifd;j =4for/<i<nl<j<n+3B; <A
Proof. If d;; = 4, we have

ij =
n n n n

Z dn-z dij—zz dti—zz dij +4
t=1

t=1 t=1 t=1
n

1 n 1 n n
:EZ dtldtj_2z d“+§Z dndt]—2z dl]+4
t=1 t=1 t=1 t=1

n n
I I
- Z Gy — Ddui + Z G et — 2y +42 4
t=1 t=1

Since

o
ES
[
Y
NgE

dtl_z)(Z dl}
1
n n
duz di,-—zz dti—zz dij+4
t=1

1 t=1

Il
M=+

1

o~
I

7{:
By + Z duidy; — 2(A; +2) — 2(A; +2) + 4
t=1

= BU - 2Al - 2A] —4 +Z dtidtj

One sees that

) ) 1 Z—lBij+Ai(Aj+2)
Lemma 2. When d;j =4for/<i<nI<j<n+3, then we have 5<2—

AiAj
(4n— 2)2+4n 2+]
Proof. As d;; = 4, one sees A; > 4n — 2, which means A— < m We can also have — > 0. By
y —
Lemma 1, we have
1 1
A4 TAA AA A 22
On the other hand, we have
1
2 7%, 2 T B (10)
Adj A4 A AAj A (4n—2)2 " 4n-2
C](X)CQ(X) 2 2

Theorem 4.1. If d; < + + 1.

>4 forany I <i,j <n+ 3, thenwe have < ) =27 T -2

l]—

13
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Proof. The desired conclusion follows from Lemma 2.

4.2. Inequalities of = £3(X)
q IES)
In order to estimate the range of zégg we need to estimate the range of
1
1 1 1 4
(2= 3By + AAj +24;) (A +2) = 3 ABje + 5 Cije — 3

AiAjAg
Lemma 3. If d;; = 6 for any i, j, then we have A;AjAy > Cjjy.
Proof. One sees that

n n n

AiAjAk = (Z dti - 2)(2 dt] - 2)(2 dtk - 2)
t=1 t=1

n n n

n n n n
daz A ) du=2) dy ) diy=2) diy ) dye
t=1 t=1 t=1 t=1 t=1
n n
_ZZ dtl

[ I

Ao +4 ) (dgi + dej + dyg) -
1 t=1

n
dej ) do

t=1

~
[l
_
~
I

and

M:

n
Z s

t=1 t

Il
—_

M

ri dsj dtk
1<r,s,tsn

= Ciji + Z dyidyjde, + Z dridejdek

1sr#tsn Isr#tsn

+ Z drl rk + Z dtldtjdtk

I<sr#s<n t=1
We can further have that
A;AjAy

- Cuk + z dTldT]dtk 22 dtjz dtk

Isr#tsn

+ ) dpdyydy - 22 duz e

1sr#tsn

Tl n n
¥ dudgdy =2) dy ) dyt ) dydydee
t=1 t=1 t=1

1sr#ss<n

In order to see the relationship between A;A;A, and C; ., we need to cal- culate the value of

14
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Z drldrjdtk 22 dtjz dtk + Z dndt]dtk

1<r¢t<n 1<r¢t<n
—22 daz di+ ) drdeydy —22 daz dy.
Isr#ssn t=1 t=1

One sees that

Y dridyjdy — 25dySdu

Isr#t<n

= ) dudydu—2 ) dyydy,

1<r#t<n 1sr,tsn

= Z dndr]dtk 2 Z drjdtk 22 dt]dtk
1sr#tsn 1<T¢t<n

= ) (@i = Ddrdy —22 dejdie > —zz ey
Isr#tsn t=1 t=1

Similarly, we can obtain that

> dyideydy — 25dySdp > 22 e

Isr#tsn

and

yidsydyy = 2545y > 2 ) dydy.
t=1

1sr#ss<n

By (20), (21) and (22), we can have that

n n n n n
t=1 t=1 t=1 t=1 t=1

One sees that

Z deideyd — 22 dejdoy - 22 i zz ey
-
(52 e —22 dt,-dtk> ( Z ey — zz dudtk)
=1 t=1

t

1 n n
(52 deidgjdye =2 ) du-dt,->
t= t=1
= /1 = /1] = 1
z ( dy; —2) dyde +Z (gdt,- _ 2) sy +Z <§dtk —2) dyidy;.
t=1 t=1

t=1

—+

If d;; = 6, then we can have that

15
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n n n
1 1 1
Z (gdti - 2) dejdex + Z (5 dej — 2) deidey + Z (g dey — 2) dridej = 0.
t=1 t=1

t=1
This implies that
AiAjAg > Cijy.

As a result, we have

Cijk
0<——< 1.
AiAjAg
Lemma 4. If d;; = 6 for any i, j, then we have
8 1 1 1 1
§— jBl] +AiAj + ZAl - inBjk +8Cijk S ijk _i
A;AjAy AiAy 2
Proof. One sees that
8 1 1 1
AAjAy
8 1 1 1
B A;Aj Ay AjAy’
By Lemma 1, we have
Hence, we have
8 ]B A;A; + 24 IA B L C
335y YAl + 24 —5 4B + ¢ ijk
A;AjA
8 1 1 1
A;AjA '
This implies
8 1 1 1 1
§_§Bij+AiAj+2Ai_§AiBjk+BCijk >§Bj _i (11)
AiAjAg Aidy 2

XX 1 _ X)) _ 7

cl(X) 2 T T Ir
Proof. According to Lemma 4, we have that —c;(X) > —c;(X)c,(X) —écf(X), ie.,

cXeX) 1
e} (x) 2

Now, we consider the upper bound o

Theorem 4.2. If d;; = 6 forany i, j, then we have

c3(X)
¢ (%)

>

f c3(X)
3
c; (X)
Because 4; = Y-, d¢; — 2 = 6n — 2, we have

16
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8 1
3 1 2 Gk
+—+—t
AAiAr A AjAy T AAA,
8
3, I N 2 +1
<(@n-23% 6n—-2 (6n-27° 6
8§ 1 2 1 (12)
<—+-4—+-
34 16 6
_1+1+1+1
244 8 6
7
12

5. Conclusions

In this paper, we take M = P! x P! x --- x P! as an example to calculate the Chern numbers of complete

n+3
intersection three-folds in products of projective spaces. Thus, in our conclusion, we get its Chern

number and the inequalities that it will satisfy:
If d;; >4 forany /<i<nI<j<n+3 then we have 2 < &2 2 2
ij = =r="mt=J= ’ 2 cj(x) (4n-2)2 * 4n—

a®eX) 1 _ o) _ 7
e} (x) 2 e T

However, those conclusions build up on an important assumption, which is the value of d;;. This
means that there is still room for exploration and explanation of those results when applying other values
of dl]

As for the future meaning of research into this field, it may help in the field of physics. For instance,
Miyaoka-Yau type inequalities are widely applied to the quantum mechanics and field theory, so we
believe researches like this can be applied to more different conditions.

2+]. If

dij=6forany/ <i<n/<j<n+3then
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