Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 21, 20 December 2023


Open Access | Article

From RNA world to RNA-peptide world: A review

Handi Zheng * 1
1 Shanghai Institute of Technology

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 21, 115-124
Published 20 December 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Handi Zheng. From RNA world to RNA-peptide world: A review. TNS (2023) Vol. 21: 115-124. DOI: 10.54254/2753-8818/21/20230843.

Abstract

How life starts from small molecules to RNAs and further to modern life is an unanswered question. Cyanosulfitic chemistry established the synthesis of building blocks, including 12 proteinogenic amino acids, 4 ribo- and deoxyribo-nucleosides, and phospholipids, from hydrogen cyanide and hydrogen sulfite under prebiotically plausible conditions. Later on, the non-enzymatic monomer extension of nucleotides provided a plausible pathway from mononucleotides to RNAs giving rise to the RNA world. RNA is one of the key components for the origin of life, firstly, the sequence information can be heritage by template copying reaction. Secondly, RNA is able to fold into a secondary structure which has the capability to catalyze chemical reactions. The RNA world scenario has perfectly overcome the chicken-egg problem, but it still cannot explain why peptides are involved in modern life. Most recently, with the establishment of the reaction between RNA and peptides, the trajectory to the RNA-peptide world theory has opened up a new era of the origin of life research. Here I will discuss the current results relevant to the RNA world to RNA-peptide world theory.

Keywords

RNA world, RNA-peptide world, the non-enzymatic replication of nucleotides.

References

1. Keefe, A.D.; Miller, S.L. Was ferrocyanide a prebiotic reagent?. Orig Life Evol Biosph. 1996,26(2),111-129. https://doi.org/ 10.1007/BF01809851

2. Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem. 2015,7(4),301-307. https://doi.org/10.1038/nchem.2202

3. Sutherland, J.D. The Origin of Life--Out of the Blue. Angew Chem Int Ed Engl.2016,55(1),104-121. https://doi.org/10.1002/anie.201506585

4. Grosshans, H.; Filipowicz, W. Molecular biology: the expanding world of small RNAs. Nature. 2008,451(7177),414-416. https://doi.org/10.1038/451414a

5. Schrum, J.P.; Ricardo, A.; Krishnamurthy, M.; Blain, J.C.; Szostak, J.W. Efficient and rapid template-directed nucleic acid copying using 2'-amino-2',3'-dideoxyribonucleoside-5'-phosphorimidazolide monomers. J Am Chem Soc. 2009,131(40),14560-14570. https://doi.org/10.1021/ja906557v

6. Kim, S.C.; Zhou, L.; Zhang, W.; O'Flaherty, D.K.; Rondo-Brovetto, V.; Szostak, J.W. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides. J Am Chem Soc. 2020,142(5),2317-2326. https://doi.org/10.1021/jacs.9b11239

7. Kim, S.C.; O'Flaherty, D.K.; Giurgiu, C.; Zhou, L.; Szostak, J.W. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J Am Chem Soc. 2021,143(9),3267-3279. https://doi.org/10.1021/jacs.0c12955

8. Wu, T.; Orgel, L.E. Nonenzymatic template-directed synthesis on hairpin oligonucleotides. 3. Incorporation of adenosine and uridine residues. J Am Chem Soc. 1992,114(21),7963-7969. https://doi.org/10.1021/ja00047a001

9. Kervio, E.; Sosson, M.; Richert, C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res. 2016,44(12),5504-5514. https://doi.org/10.1093/nar/gkw476

10. Jauker, M.; Griesser, H.; Richert, C. Copying of RNA Sequences without Pre-Activation. Angew Chem Int Ed Engl. 2015,54(48),14559-14563. https://doi.org/10. 1002/anie.201506592

11. Sosson, M.; Pfeffer, D.; Richert, C. Enzyme-free ligation of dimers and trimers to RNA primers. Nucleic Acids Res. 2019,47(8),3836-3845. https://doi.org/10.1093/nar/gkz160

12. Tam, C.P.; Fahrenbach, A.C.; Björkbom, A.; Prywes, N.; Izgu, E.C.; Szostak, J.W. Downstream Oligonucleotides Strongly Enhance the Affinity of GMP to RNA Primer-Template Complexes. J Am Chem Soc. 2017,139(2),571-574. https://doi.org/10.1021/jacs.6b09760

13. Prywes, N.; Blain, J.C.; Del, Frate, F.; Szostak, J.W. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides. Elife. 2016,5, e17756. https://doi.org/10.7554/eLife.17756

14. Hagenbuch, P.; Kervio, E.; Hochgesand, A.; Plutowski, U.; Richert , C. Chemical primer extension: efficiently determining single nucleotides in DNA. Angew Chem Int Ed Engl. 2005,44(40),6588-6592. https://doi.org/10.1002/anie.200501794

15. Walton, T.; Zhang, W.; Li, L.; Tam, C.P.; Szostak, J.W. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. Angew Chem Int Ed Engl. 2019,58(32),10812-10819. https://doi.org/10.1002/anie.201902050

16. Zhang, W.; Walton, T.; Li, L.; Szostak, J.W. Crystallographic observation of nonenzymatic RNA primer extension. Elife. 2018,7,e36422. https://doi.org/10.7554/eLife.36422

17. Zhang, W.; Tam, C.P.; Walton T.; Fahrenbach, A.C.; Birrane, G.; Szostak, J.W. Insight into the mechanism of nonenzymatic RNA primer extension from the structure of an RNA-GpppG complex. Proc Natl Acad Sci U S A. 2017,114(29),7659-7664. https://doi.org/10.1073/ pnas.1704006114

18. Zhang, W.; Walton, T.; Li, L.; Szostak, J.W. Crystallographic observation of nonenzymatic RNA primer extension. Elife. 2018,7,e36422. https://doi.org/10.7554/eLife.36422

19. Duzdevich, D.; Carr, C.E.; Szostak, J.W. Deep sequencing of non-enzymatic RNA primer extension. Nucleic Acids Res. 2020,48(12),e70. https://doi.org/10.1093/nar/gkaa400

20. Lincoln, T.A.; Joyce, G.F. Self-sustained replication of an RNA enzyme. Science. 2009,323(5918),1229-1232. https://doi.org/ 10.1126/science.1167856

21. Prywes, N.; Blain, J.C.; Del , Frate, F.; Szostak, J.W. Nonenzymatic copying of RNA templates containing all four letters is catalyzed by activated oligonucleotides. Elife. 2016,5,e17756. https://doi.org/10.7554/eLife.17756

22. Jash, B.; Tremmel, P.; Jovanovic, D.; Richert, C. Single nucleotide translation without ribosomes. Nat Chem. 2021,13(8),751-757. https://doi.org/10.1038/s41557-021-00749-4

23. Bremer, J.; Richter, C.; Schwalbe, H.; Richert, C. Synthesis of a Peptidoyl RNA Hairpin via a Combination of Solid-Phase and Template-Directed Chain Assembly. Chembiochem. 2022,23(18),e202200352. https://doi.org/10.1002/cbic.202200352

24. Radakovic, A.; Wright, T.H.; Lelyveld, V.S.; Szostak, J.W. A Potential Role for Aminoacylation in Primordial RNA Copying Chemistry. Biochemistry. 2021,60(6),477-488. https://doi.org/10.1021/acs.biochem.0c00943

25. Radakovic, A.; DasGupta, S.; Wright, T.H.; Aitken, H.R.M.; Szostak, J.W. Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides. Proc Natl Acad Sci U S A. 2022,119(7),e2116840119. https://doi.org/10.1073/pnas.2116840119

26. Lai, Y.C.; Liu, Z.; Chen, I.A. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc Natl Acad Sci U S A. 2021,118(21),e2025054118. https://doi.org/10.1073/pnas.2025054118

27. Szathmáry, E.; Demeter, L. Group selection of early replicators and the origin of life. J Theor Biol. 1987,128(4),463-486. https://doi.org/10.1016/s0022-5193(87)80191-1

28. Leu, K.; Kervio, E.; Obermayer, B.; et al. Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences. J Am Chem Soc. 2013,135(1),354-366. https://doi.org/10.1021/ja3095558

29. Roberts, S.J.; Liu, Z.; Sutherland, J.D. Potentially Prebiotic Synthesis of Aminoacyl-RNA via a Bridging Phosphoramidate-Ester Intermediate. J Am Chem Soc. 2022,144(9),4254-4259. https://doi.org/10.1021/jacs.2c00772

30. Tamura, K.; Schimmel, P. Chiral-selective aminoacylation of an RNA minihelix. Science. 2004,305(5688),1253. https://doi.org/10.1126/science.1099141

31. Tamura, K.; Schimmel, P.R. Chiral-selective aminoacylation of an RNA minihelix: Mechanistic features and chiral suppression. Proc Natl Acad Sci U S A. 2006,103(37),13750-13752. https://doi.org/10.1073/pnas.0606070103

32. Bokov, K.; Steinberg, S.V. A hierarchical model for evolution of 23S ribosomal RNA. Nature. 2009,457(7232),977-980. https://doi.org/10.1038/nature07749

33. Corley, M.; Burns, M.C.; Yeo, G.W. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol Cell. 2020,78(1),9-29. https://doi.org/10.1016/j.molcel.2020.03.011

34. Chatterjee, S.; Yadav, S. The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the Evolution of Translation and the Genetic Code. Life (Basel). 2019,9(1),25. https://doi.org/10.3390/life9010025

35. Kunnev, D.; Gospodinov, A. Possible Emergence of Sequence Specific RNA Aminoacylation via Peptide Intermediary to Initiate Darwinian Evolution and Code Through Origin of Life. Life (Basel). 2018,8(4),44. https://doi.org/ 10.3390/life8040044

36. Carter, C.W. Jr. An Alternative to the RNA World. Nat Hist. 2016,125(1),28-33.

37. Carter, C.W. Jr.; Wills, P.R. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding. Mol Biol Evol. 2018,35(2),269-286. https://doi.org/10.1093/molbev/msx265

38. Martinez-Rodriguez, L.; Erdogan, O.; Jimenez-Rodriguez, M.; et al. Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene. J Biol Chem. 2015,290(32),19710-19725. https://doi.org/10.1074/jbc.M115.642876

39. Carter, C.W. Jr.; Kraut, J. A proposed model for interaction of polypeptides with RNA. Proc Natl Acad Sci U S A. 1974,71(2),283-287. https://doi.org/10.1073/pnas.71.2.283

40. Carter, C.W. Jr. Coding of Class I and II Aminoacyl-tRNA Synthetases. Adv Exp Med Biol. 2017,966,103-148. https://doi.org/10.1007/5584_2017_93

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
ISBN (Print)
978-1-83558-215-2
ISBN (Online)
978-1-83558-216-9
Published Date
20 December 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/21/20230843
Copyright
20 December 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated