Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 35, 26 April 2024


Open Access | Article

The approaches and challenges in delivery CRISPR/Cas9

Zhirui Zhang * 1
1 Beijing Institute of Technology Zhuhai

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 35, 92-101
Published 26 April 2024. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Zhirui Zhang. The approaches and challenges in delivery CRISPR/Cas9. TNS (2024) Vol. 35: 92-101. DOI: 10.54254/2753-8818/35/20240911.

Abstract

A significant technological advance, grouped regularly separated short palindromic repeats/CRISPR-associated protein 9 genome editing program has revolutionized genetic modification for precision medicine and therapeutic and diagnostic applications. Furthermore, efficient transport of the CRISPR elements is necessary for the successful application of this type of gene editing for therapeutics. However, there are considerable challenges associated with delivering CRISPR/Cas9 to the target. The CRISPR/Cas9 gene editing system's molecular mechanisms, current delivery strategies, and the various CRISPR/Cas9 delivery vehicles, including non-viral delivery methods like microinjection and electroporation and this review will address virus transmission strategies such as adeno-associated virus (AAV) and CRISPR-Phage, as well as a discussion of their specific advantages. At last, we discuss major obstacles to CRISPR/Cas9 efficacy that must be solved before successful human gene therapy may be achieved.

Keywords

CRISPR/Cas9, Delivery strategies, Gene editing

References

1. J. Y. Wang and J. A. Doudna, ‘CRISPR technology: A decade of genome editing is only the beginning’, Science, vol. 379, no. 6629, p. eadd8643, Jan. 2023, doi: 10.1126/science.add8643.

2. P. D. Hsu, E. S. Lander, and F. Zhang, ‘Development and Applications of CRISPR-Cas9 for Genome Engineering’, Cell, vol. 157, no. 6, pp. 1262–1278, Jun. 2014, doi: 10.1016/j.cell.2014.05.010.

3. J. A. Doudna and E. Charpentier, ‘The new frontier of genome engineering with CRISPR-Cas9’, Science, vol. 346, no. 6213, p. 1258096, Nov. 2014, doi: 10.1126/science.1258096.

4. D. B. T. Cox, R. J. Platt, and F. Zhang, ‘Therapeutic genome editing: prospects and challenges’, Nat Med, vol. 21, no. 2, pp. 121–131, Feb. 2015, doi: 10.1038/nm.3793.

5. ‘National Center for Advancing Translational Sciences’, National Center for Advancing Translational Sciences. Accessed: Sep. 21, 2023. [Online]. Available: https://ncats.nih.gov/

6. A. Nath et al., ‘Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome’, Biomedicine & Pharmacotherapy, vol. 151, p. 113122, Jul. 2022, doi: 10.1016/j.biopha.2022.113122.

7. P. Gholizadeh et al., ‘How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance’, IDR, vol. Volume 13, pp. 1111–1121, Apr. 2020, doi: 10.2147/IDR.S247271.

8. ‘Evolution and classification of the CRISPR–Cas systems | Nature Reviews Microbiology’. Accessed: Sep. 22, 2023. [Online]. Available: https://www.nature.com/articles/nrmicro2577

9. ‘Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials | Nature Biotechnology’. Accessed: Sep. 22, 2023. [Online]. Available: https://www.nature.com/articles/nbt.3043

10. ‘CRISPR-Cas systems for genome editing, regulation and targeting - PMC’. Accessed: Sep. 22, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022601/

11. F. Wimmer and C. L. Beisel, ‘CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers’, Frontiers in Microbiology, vol. 10, 2020, Accessed: Sep. 22, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2019.03078

12. R. Mout, M. Ray, Y.-W. Lee, F. Scaletti, and V. M. Rotello, ‘In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges’, Bioconjug Chem, vol. 28, no. 4, pp. 880–884, Apr. 2017, doi: 10.1021/acs.bioconjchem.7b00057.

13. C. A. Lino, J. C. Harper, J. P. Carney, and J. A. Timlin, ‘Delivering CRISPR: a review of the challenges and approaches’, Drug Deliv, vol. 25, no. 1, pp. 1234–1257, Nov. 2018, doi: 10.1080/10717544.2018.1474964.

14. S. Tong, B. Moyo, C. M. Lee, K. Leong, and G. Bao, ‘Engineered materials for in vivo delivery of genome-editing machinery’, Nat Rev Mater, vol. 4, pp. 726–737, Nov. 2019, doi: 10.1038/s41578-019-0145-9.

15. J. van Haasteren, J. Li, O. J. Scheideler, N. Murthy, and D. V. Schaffer, ‘The delivery challenge: fulfilling the promise of therapeutic genome editing’, Nat Biotechnol, vol. 38, no. 7, pp. 845–855, Jul. 2020, doi: 10.1038/s41587-020-0565-5.

16. B. H. Yip, ‘Recent Advances in CRISPR/Cas9 Delivery Strategies’, Biomolecules, vol. 10, no. 6, p. 839, May 2020, doi: 10.3390/biom10060839.

17. F. Sinclair, A. A. Begum, C. C. Dai, I. Toth, and P. M. Moyle, ‘Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing’, Drug Deliv Transl Res, vol. 13, no. 5, pp. 1500–1519, May 2023, doi: 10.1007/s13346-023-01320-z.

18. L. L. Lesueur, L. M. Mir, and F. M. André, ‘Overcoming the Specific Toxicity of Large Plasmids Electrotransfer in Primary Cells In Vitro’, Mol Ther Nucleic Acids, vol. 5, no. 3, p. e291, Mar. 2016, doi: 10.1038/mtna.2016.4.

19. H. Frangoul et al., ‘CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia’, N Engl J Med, vol. 384, no. 3, pp. 252–260, Jan. 2021, doi: 10.1056/NEJMoa2031054.

20. J. L. Young and D. A. Dean, ‘Electroporation-Mediated Gene Delivery’, Advances in genetics, vol. 89, p. 49, 2015, doi: 10.1016/bs.adgen.2014.10.003.

21. C. A. Lino, J. C. Harper, J. P. Carney, and J. A. Timlin, ‘Delivering CRISPR: a review of the challenges and approaches’, Drug Deliv, vol. 25, no. 1, pp. 1234–1257, Nov. 2018, doi: 10.1080/10717544.2018.1474964.

22. B. Bonamassa, L. Hai, and D. Liu, ‘Hydrodynamic Gene Delivery and Its Applications in Pharmaceutical Research’, Pharm Res, vol. 28, no. 4, pp. 694–701, Apr. 2011, doi: 10.1007/s11095-010-0338-9.

23. H. Yin et al., ‘Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo’, Nat Biotechnol, vol. 34, no. 3, pp. 328–333, Mar. 2016, doi: 10.1038/nbt.3471.

24. A. M. Jhaveri and V. P. Torchilin, ‘Multifunctional polymeric micelles for delivery of drugs and siRNA’, Front. Pharmacol., vol. 5, Apr. 2014, doi: 10.3389/fphar.2014.00077.

25. A. Mariano, C. Lubrano, U. Bruno, C. Ausilio, N. B. Dinger, and F. Santoro, ‘Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane’, Chem. Rev., vol. 122, no. 4, pp. 4552–4580, Feb. 2022, doi: 10.1021/acs.chemrev.1c00363.

26. L. J. Fox, R. M. Richardson, and W. H. Briscoe, ‘PAMAM dendrimer - cell membrane interactions’, Advances in Colloid and Interface Science, vol. 257, pp. 1–18, Jul. 2018, doi: 10.1016/j.cis.2018.06.005.

27. ‘Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery - PMC’. Accessed: Sep. 23, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210150/

28. W. Sun et al., ‘Efficient Delivery of CRISPR-Cas9 for Genome Editing via Self-Assembled DNA Nanoclews’, Angew Chem Int Ed Engl, vol. 54, no. 41, pp. 12029–12033, Oct. 2015, doi: 10.1002/anie.201506030.

29. R. J. Samulski and N. Muzyczka, ‘AAV-Mediated Gene Therapy for Research and Therapeutic Purposes’, Annu. Rev. Virol., vol. 1, no. 1, pp. 427–451, Nov. 2014, doi: 10.1146/annurev-virology-031413-085355.

30. S. Daya and K. I. Berns, ‘Gene Therapy Using Adeno-Associated Virus Vectors’, Clin Microbiol Rev, vol. 21, no. 4, pp. 583–593, Oct. 2008, doi: 10.1128/CMR.00008-08.

31. D. R. Deyle and D. W. Russell, ‘Adeno-associated virus vector integration’, Curr Opin Mol Ther, vol. 11, no. 4, pp. 442–447, Aug. 2009.

32. A. Hatoum-Aslan, ‘Phage Genetic Engineering Using CRISPR–Cas Systems’, Viruses, vol. 10, no. 6, p. 335, Jun. 2018, doi: 10.3390/v10060335.

33. J. R. Fagen, D. Collias, A. K. Singh, and C. L. Beisel, ‘Advancing the design and delivery of CRISPR antimicrobials’, Current Opinion in Biomedical Engineering, vol. 4, pp. 57–64, Dec. 2017, doi: 10.1016/j.cobme.2017.10.001.

34. A. S. A. Dowah and M. R. J. Clokie, ‘Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria’, Biophys Rev, vol. 10, no. 2, pp. 535–542, Apr. 2018, doi: 10.1007/s12551-017-0382-3.

35. D. Palacios Araya, K. L. Palmer, and B. A. Duerkop, ‘CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria’, PLoS Pathog, vol. 17, no. 7, p. e1009672, Jul. 2021, doi: 10.1371/journal.ppat.1009672.

36. F. L. Gordillo Altamirano and J. J. Barr, ‘Phage Therapy in the Postantibiotic Era’, Clin Microbiol Rev, vol. 32, no. 2, pp. e00066-18, Mar. 2019, doi: 10.1128/CMR.00066-18.

37. P. Gholizadeh et al., ‘How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance’, IDR, vol. Volume 13, pp. 1111–1121, Apr. 2020, doi: 10.2147/IDR.S247271.

38. ‘Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function | SpringerLink’. Accessed: Sep. 22, 2023. [Online]. Available: https://link.springer.com/article/10.1007/s12015-022-10377-1

39. A. Nath et al., ‘Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome’, Biomedicine & Pharmacotherapy, vol. 151, p. 113122, Jul. 2022, doi: 10.1016/j.biopha.2022.113122.

40. Z. Wu, H. Yang, and P. Colosi, ‘Effect of genome size on AAV vector packaging’, Mol Ther, vol. 18, no. 1, pp. 80–86, Jan. 2010, doi: 10.1038/mt.2009.255.

41. B. Dong, H. Nakai, and W. Xiao, ‘Characterization of genome integrity for oversized recombinant AAV vector’, Mol Ther, vol. 18, no. 1, pp. 87–92, Jan. 2010, doi: 10.1038/mt.2009.258.

42. E. Senís et al., ‘CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox’, Biotechnol J, vol. 9, no. 11, pp. 1402–1412, Nov. 2014, doi: 10.1002/biot.201400046.

43. R. Mout et al., ‘Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing’, ACS Nano, vol. 11, no. 3, pp. 2452–2458, Mar. 2017, doi: 10.1021/acsnano.6b07600.

44. H. Yin et al., ‘Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype’, Nat Biotechnol, vol. 32, no. 6, pp. 551–553, Jun. 2014, doi: 10.1038/nbt.2884.

45. R. Mout et al., ‘Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing’, ACS Nano, vol. 11, no. 3, pp. 2452–2458, Mar. 2017, doi: 10.1021/acsnano.6b07600.

46. B. P. Kleinstiver et al., ‘High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects’, Nature, vol. 529, no. 7587, pp. 490–495, Jan. 2016, doi: 10.1038/nature16526.

47. A. Casini et al., ‘A highly specific SpCas9 variant is identified by in vivo screening in yeast’, Nat Biotechnol, vol. 36, no. 3, pp. 265–271, Mar. 2018, doi: 10.1038/nbt.4066.

48. C. A. Vakulskas et al., ‘A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells’, Nat Med, vol. 24, no. 8, pp. 1216–1224, Aug. 2018, doi: 10.1038/s41591-018-0137-0.

49. M. Bratovič et al., ‘Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches’, Nat Chem Biol, vol. 16, no. 5, pp. 587–595, May 2020, doi: 10.1038/s41589-020-0490-4.

50. X.-H. Zhang, L. Y. Tee, X.-G. Wang, Q.-S. Huang, and S.-H. Yang, ‘Off-target Effects in CRISPR/Cas9-mediated Genome Engineering’, Mol Ther Nucleic Acids, vol. 4, no. 11, p. e264, Nov. 2015, doi: 10.1038/mtna.2015.37.

51. F. Heigwer, G. Kerr, and M. Boutros, ‘E-CRISP: fast CRISPR target site identification’, Nat Methods, vol. 11, no. 2, pp. 122–123, Feb. 2014, doi: 10.1038/nmeth.2812.

52. S. Bae, J. Park, and J.-S. Kim, ‘Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases’, Bioinformatics, vol. 30, no. 10, pp. 1473–1475, May 2014, doi: 10.1093/bioinformatics/btu048.

53. K. Hiranniramol, Y. Chen, W. Liu, and X. Wang, ‘Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency’, Bioinformatics, vol. 36, no. 9, pp. 2684–2689, May 2020, doi: 10.1093/bioinformatics/btaa041.

54. H. Frangoul et al., ‘CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia’, N Engl J Med, vol. 384, no. 3, pp. 252–260, Jan. 2021, doi: 10.1056/NEJMoa2031054.

55. J. D. Gillmore et al., ‘CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis’, N Engl J Med, vol. 385, no. 6, pp. 493–502, Aug. 2021, doi: 10.1056/NEJMoa2107454.

56. J. Grünewald et al., ‘Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors’, Nature, vol. 569, no. 7756, pp. 433–437, May 2019, doi: 10.1038/s41586-019-1161-z.

57. C. Zhou et al., ‘Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis’, Nature, vol. 571, no. 7764, pp. 275–278, Jul. 2019, doi: 10.1038/s41586-019-1314-0.

58. H. A. Rees, C. Wilson, J. L. Doman, and D. R. Liu, ‘Analysis and minimization of cellular RNA editing by DNA adenine base editors’, Sci Adv, vol. 5, no. 5, p. eaax5717, May 2019, doi: 10.1126/sciadv.aax5717.

59. J. Grünewald et al., ‘CRISPR DNA base editors with reduced RNA off-target and self-editing activities’, Nat Biotechnol, vol. 37, no. 9, pp. 1041–1048, Sep. 2019, doi: 10.1038/s41587-019-0236-6.

60. Y. Yu et al., ‘Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity’, Nat Commun, vol. 11, no. 1, p. 2052, Apr. 2020, doi: 10.1038/s41467-020-15887-5.

61. M. Srivastava et al., ‘An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression’, Cell, vol. 151, no. 7, pp. 1474–1487, Dec. 2012, doi: 10.1016/j.cell.2012.11.054.

62. A. E. Tomkinson, T. R. L. Howes, and N. E. Wiest, ‘DNA ligases as therapeutic targets’, Transl Cancer Res, vol. 2, no. 3, p. 1219, Jun. 2013.

63. F. Robert, M. Barbeau, S. Éthier, J. Dostie, and J. Pelletier, ‘Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing’, Genome Med, vol. 7, no. 1, p. 93, Aug. 2015, doi: 10.1186/s13073-015-0215-6.

64. S. V. Vartak and S. C. Raghavan, ‘Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing’, FEBS J, vol. 282, no. 22, pp. 4289–4294, Nov. 2015, doi: 10.1111/febs.13416.

65. C. Yu et al., ‘Small molecules enhance CRISPR genome editing in pluripotent stem cells’, Cell Stem Cell, vol. 16, no. 2, pp. 142–147, Feb. 2015, doi: 10.1016/j.stem.2015.01.003.

66. V. T. Chu et al., ‘Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells’, Nat Biotechnol, vol. 33, no. 5, pp. 543–548, May 2015, doi: 10.1038/nbt.3198.

67. S. Lin, B. T. Staahl, R. K. Alla, and J. A. Doudna, ‘Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery’, Elife, vol. 3, p. e04766, Dec. 2014, doi: 10.7554/eLife.04766.

68. D. M. Weinstock and M. Jasin, ‘Alternative pathways for the repair of RAG-induced DNA breaks’, Mol Cell Biol, vol. 26, no. 1, pp. 131–139, Jan. 2006, doi: 10.1128/MCB.26.1.131-139.2006.

69. C. D. Richardson, G. J. Ray, M. A. DeWitt, G. L. Curie, and J. E. Corn, ‘Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA’, Nat Biotechnol, vol. 34, no. 3, pp. 339–344, Mar. 2016, doi: 10.1038/nbt.3481.

70. T. Gutschner, M. Haemmerle, G. Genovese, G. F. Draetta, and L. Chin, ‘Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair’, Cell Rep, vol. 14, no. 6, pp. 1555–1566, Feb. 2016, doi: 10.1016/j.celrep.2016.01.019.

71. A. Lomova et al., ‘Improving Gene Editing Outcomes in Human Hematopoietic Stem and Progenitor Cells by Temporal Control of DNA Repair’, Stem Cells, vol. 37, no. 2, pp. 284–294, Feb. 2019, doi: 10.1002/stem.2935.

72. X. Ling et al., ‘Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates’, Sci Adv, vol. 6, no. 15, p. eaaz0051, Apr. 2020, doi: 10.1126/sciadv.aaz0051.

73. J. Neefjes, M. L. M. Jongsma, P. Paul, and O. Bakke, ‘Towards a systems understanding of MHC class I and MHC class II antigen presentation’, Nat Rev Immunol, vol. 11, no. 12, pp. 823–836, Nov. 2011, doi: 10.1038/nri3084.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2nd International Conference on Modern Medicine and Global Health
ISBN (Print)
978-1-83558-395-1
ISBN (Online)
978-1-83558-396-8
Published Date
26 April 2024
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/35/20240911
Copyright
26 April 2024
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated