Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 3, 28 April 2023


Open Access | Article

The Role of Platelets in Central Hubs of Inflammation Regulation

Yan Bo * 1
1 Department of Medical College, Northwest University for Nationalities, Lanzhou Gansu province, 730000, China

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 3, 80-88
Published 28 April 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Yan Bo. The Role of Platelets in Central Hubs of Inflammation Regulation. TNS (2023) Vol. 3: 80-88. DOI: 10.54254/2753-8818/3/20220186.

Abstract

When receptors were found, the study of platelets turned to the signaling pathway. When platelets in the progression of some disease could provide valuable clues, the study of platelets turned to the relationship between platelets granules, platelet morphology and inflammatory immune responses. And even some geneticists through the analysis of genes tried to encode the secret of platelets and inflammation. We reviewed the study of platelets and found the substance released by platelets could perform complex functions. The formation of immunothrombosis was central to immunological platelet function. And it could lead to the release of platelets granules, thus initiating a cascade of inflammatory immune responses, which played a central role in adaptive and innate immune. And we found platelets induced epilepsy immune by S100b. In this review, we focused on sterile inflammation, pathogen infection immunity, tumor immunity and provided the latest evidence. Hoping in the future development, platelets shed new light on pathogens infection.

Keywords

platelets, infection immune, epilepsy immune, sterile inflammation

References

1. Kapoor, S., Opneja, A., & Nayak, L. (2018). The role of neutrophils in thrombosis. Thrombosis Research, 170, 87–96. https://doi.org/10.1016/j.thromres.2018.08.005

2. Shannon, O., Hertzén, E., Norrby-Teglund, A., Mörgelin, M., Sjöbring, U., & Björck, L. (2007). Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Molecular Microbiology, 65(5), 1147–1157. https://doi.org/10.1111/j.1365-2958.2007.05841.x

3. Rock, K. L., Latz, E., Ontiveros, F., & Kono, H. (2010). The Sterile Inflammatory Response. Annual Review of Immunology, 28(1), 321–342. https://doi.org/10.1146/annurev-immunol-030409-101311

4. Sharda, A., & Flaumenhaft, R. (2018). The life cycle of platelet granules. F1000Research, 7, 236. https://doi.org/10.12688/f1000research.13283.1

5. Blair, P., & Flaumenhaft, R. (2009). Platelet α-granules: Basic biology and clinical correlates. Blood Reviews, 23(4), 177–189. https://doi.org/10.1016/j.blre.2009.04.001

6. Duerschmied, D., Suidan, G. L., Demers, M., Herr, N., Carbo, C., Brill, A., Cifuni, S. M., Mauler, M., Cicko, S., Bader, M., Idzko, M., Bode, C., & Wagner, D. D. (2013). Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood, 121(6), 1008–1015. https://doi.org/10.1182/blood-2012-06-437392

7. Whiteheart, S. W. (2011). Platelet granules: Surprise packages. Blood, 118(5), 1190–1191. https://doi.org/10.1182/blood-2011-06-359836

8. King, S. M., & Reed, G. L. (2002). Development of platelet secretory granules. Seminars in Cell & Developmental Biology, 13(4), 293–302. https://doi.org/10.1016/S1084952102000599

9. Rendu, F., & Brohard-Bohn, B. (2001). The platelet release reaction: Granules’ constituents, secretion and functions. Platelets, 12(5), 261–273. https://doi.org/10.1080/09537100120068170

10. Kerlin, B. A., Yan, S. B., Isermann, B. H., Brandt, J. T., Sood, R., Basson, B. R., Joyce, D. E., Weiler, H., & Dhainaut, J.-F. (2003). Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood, 102(9), 3085–3092. https://doi.org/10.1182/blood-2003-06-1789

11. Kambas, K., Mitroulis, I., & Ritis, K. (2012). The emerging role of neutrophils in thrombosis—The journey of TF through NETs. Frontiers in Immunology, 3. https://doi.org/10.3389/fimmu.2012.00385

12. Fuchs, T. A., Brill, A., Duerschmied, D., Schatzberg, D., Monestier, M., Myers, D. D., Wrobleski, S. K., Wakefield, T. W., Hartwig, J. H., & Wagner, D. D. (2010). Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences, 107(36), 15880–15885. https://doi.org/10.1073/pnas.1005743107

13. Massberg, S., Grahl, L., von Bruehl, M.-L., Manukyan, D., Pfeiler, S., Goosmann, C., Brinkmann, V., Lorenz, M., Bidzhekov, K., Khandagale, A. B., Konrad, I., Kennerknecht, E., Reges, K., Holdenrieder, S., Braun, S., Reinhardt, C., Spannagl, M., Preissner, K. T., & Engelmann, B. (2010). Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nature Medicine, 16(8), 887–896. https://doi.org/10.1038/nm.2184

14. Wallis, S., Wolska, N., Englert, H., Posner, M., Upadhyay, A., Renné, T., Eggleston, I., Bagby, S., & Pula, G. (2022). A peptide from the staphylococcal protein Efb binds P‐selectin and inhibits the interaction of platelets with leukocytes. Journal of Thrombosis and Haemostasis, 20(3), 729–741. https://doi.org/10.1111/jth.15613

15. Chen, H., Zhang, S., Wang, H., Bao, L., Wu, W., & Qi, R. (2022). Fruitflow inhibits platelet function by suppressing Akt/GSK3β, Syk/PLCγ2 and p38 MAPK phosphorylation in collagen-stimulated platelets. BMC Complementary Medicine and Therapies, 22(1), 75. https://doi.org/10.1186/s12906-022-03558-5

16. Li, M., Zhu, W., Saeed, U., Sun, S., Fang, Y., Wang, C., & Luo, Z. (2022). Identification of the molecular subgroups in asthma by gene expression profiles: Airway inflammation implications. BMC Pulmonary Medicine, 22(1), 29. https://doi.org/10.1186/s12890-022-01824-3

17. Mauler, M., Schanze, N., Krauel, K., Schoenichen, C., Glatzki, F., Poeschl, S., Stallmann, D., Mezger, J., Gauchel, N., Sharipova, D., Rieder, M., Hilgendorf, I., Witsch, T., Bode, C., & Duerschmied, D. (2022). Peripheral serotonin lacks effects on endothelial adhesion molecule expression in acute inflammation. Journal of Thrombosis and Haemostasis, 20(1), 222–229. https://doi.org/10.1111/jth.15541

18. Chesko, D. M., & Wilgus, T. A. (2022). Immune Cells in Cutaneous Wound Healing: A Review of Functional Data from Animal Models. International Journal of Molecular Sciences, 23(5), 2444. https://doi.org/10.3390/ijms23052444

19. Gialamprinou, D., Mitsiakos, G., Katsaras, G. N., Kontovazainitis, C.-G., Karagianni, P., Roilides, E., & Kenet, G. (2022). Neonatal Sepsis and Hemostasis. Diagnostics, 12(2), 261. https://doi.org/10.3390/diagnostics12020261

20. Orlova, V. V., Choi, E. Y., Xie, C., Chavakis, E., Bierhaus, A., Ihanus, E., Ballantyne, C. M., Gahmberg, C. G., Bianchi, M. E., Nawroth, P. P., & Chavakis, T. (2007). A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. The EMBO Journal, 26(4), 1129–1139. https://doi.org/10.1038/sj.emboj.7601552

21. Maugeri, N., Campana, L., Gavina, M., Covino, C., De Metrio, M., Panciroli, C., Maiuri, L., Maseri, A., D’Angelo, A., Bianchi, M. E., Rovere-Querini, P., & Manfredi, A. A. (2014). Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis, 12(12), 2074–2088. https://doi.org/10.1111/jth.12710

22. Nic an Riogh, E., Dunne, E., Cowley, S., Leamy, K., McCarthy, G., Kenny, D., & Stack, J. (2022). Dynamic platelet function: A novel biomarker in inflammatory arthritis? PLOS ONE, 17(1), e0261825. https://doi.org/10.1371/journal.pone.0261825

23. Bianchi, S., Torge, D., Rinaldi, F., Piattelli, M., Bernardi, S., & Varvara, G. (2022). Platelets’ Role in Dentistry: From Oral Pathology to Regenerative Potential. Biomedicines, 10(2), 218. https://doi.org/10.3390/biomedicines10020218

24. Dinçer, A. B. K., Gülöksüz, E. G. A., Sezer, S., Yılmaz, R., Turgay, T. M., Ateş, A., & Kınıklı, G. (2022). Neutrophil/lymphocyte ratio but not platelet/lymphocyte ratio and mean platelet volume can be an indicator of subclinical inflammation in patients with Familial Mediterranean Fever. The Egyptian Rheumatologist, 44(3), 215–218. https://doi.org/10.1016/j.ejr.2021.11.005

25. Nemmar, A., & Hoylaerts, M. F. (2022). Neutrophil Cathepsin G Enhances Thrombogenicity of Mildly Injured Arteries via ADP-Mediated Platelet Sensitization. International Journal of Molecular Sciences, 23(2), 744. https://doi.org/10.3390/ijms23020744

26. Iba, T., & Levy, J. H. (2018). Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. Journal of Thrombosis and Haemostasis, 16(2), 231–241. https://doi.org/10.1111/jth.13911

27. Mcnicol, A., Agpalza, A., Jackson, E. C. G., Hamzeh-Cognasse, H., Garraud, O., & Cognasse, F. (2011). Streptococcus sanguinis-induced cytokine release from platelets: Platelet activation by S. sanguinis and epinephrine. Journal of Thrombosis and Haemostasis, 9(10), 2038–2049. https://doi.org/10.1111/j.1538-7836.2011.04462.x

28. Herzberg, M. C., Krishnan, L. K., & MacFarlane, G. D. (1993). Involvement of α2-Adrenoreceptors and G Proteins in the Modulation of Platelet Secretion in Response to Streptococcus sanguis. Critical Reviews in Oral Biology & Medicine, 4(3), 435–442. https://doi.org/10.1177/10454411930040032501

29. Sorgo, A. G., Heilmann, C. J., Brul, S., de Koster, C. G., & Klis, F. M. (2013). Beyond the wall: Candida albicans secret(e)s to survive. FEMS Microbiology Letters, 338(1), 10–17. https://doi.org/10.1111/1574-6968.12049

30. Girard, V., Dieryckx, C., Job, C., & Job, D. (2013). Secretomes: The fungal strike force. PROTEOMICS, 13(3–4), 597–608. https://doi.org/10.1002/pmic.201200282

31. Roeder, A., Kirschning, C. J., Rupec, R. A., Schaller, M., Weindl, G., & Korting, H. C. (2004). Toll-like receptors as key mediators in innate antifungal immunity. Medical Mycology, 42(6), 485–498. https://doi.org/10.1080/13693780400011112

32. Fontaine, T., Delangle, A., Simenel, C., Coddeville, B., van Vliet, S. J., van Kooyk, Y., Bozza, S., Moretti, S., Schwarz, F., Trichot, C., Aebi, M., Delepierre, M., Elbim, C., Romani, L., & Latgé, J.-P. (2011). Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS Pathogens, 7(11), e1002372. https://doi.org/10.1371/journal.ppat.1002372

33. Banerjee, M., Huang, Y., Joshi, S., Popa, G. J., Mendenhall, M. D., Wang, Q. J., Garvy, B. A., Myint, T., & Whiteheart, S. W. (2020). Platelets Endocytose Viral Particles and Are Activated via TLR (Toll-Like Receptor) Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(7), 1635–1650. https://doi.org/10.1161/ATVBAHA.120.314180

34. Jansen, A. J. G., Spaan, T., Low, H. Z., Di Iorio, D., van den Brand, J., Tieke, M., Barendrecht, A., Rohn, K., van Amerongen, G., Stittelaar, K., Baumgärtner, W., Osterhaus, A., Kuiken, T., Boons, G.-J., Huskens, J., Boes, M., Maas, C., & van der Vries, E. (2020). Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Advances, 4(13), 2967–2978. https://doi.org/10.1182/bloodadvances.2020001640

35. Shimony, N., Elkin, G., Kolodkin-Gal, D., Krasny, L., Urieli-Shoval, S., & Haviv, Y. S. (2009). Analysis of adenoviral attachment to human platelets. Virology Journal, 6(1), 25. https://doi.org/10.1186/1743-422X-6-25

36. Real, F., Capron, C., Sennepin, A., Arrigucci, R., Zhu, A., Sannier, G., Zheng, J., Xu, L., Massé, J.-M., Greffe, S., Cazabat, M., Donoso, M., Delobel, P., Izopet, J., Eugenin, E., Gennaro, M. L., Rouveix, E., Cramer Bordé, E., & Bomsel, M. (2020). Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4 + T cell recovery can harbor replication-competent HIV despite viral suppression. Science Translational Medicine, 12(535), eaat6263. https://doi.org/10.1126/scitranslmed.aat6263

37. Apostolidis, S. A., Sarkar, A., Giannini, H. M., Goel, R. R., Mathew, D., Suzuki, A., Baxter, A. E., Greenplate, A. R., Abdel-Hakeem, M., Oldridge, D. A., Giles, J. R., Wu, J. E., Chen, Z., Huang, Y. J., Belman, J., Pattekar, A., Manne, S., Kuthuru, O., Dougherty, J., … Wherry, E. J. (2022). Signaling Through FcgRIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Frontiers in Immunology, 13, 15.

38. Yang, Y., Li, Y., Wang, Z., Ma, F., Luo, R., Xu, X., Zhou, G., Wang, J., Niu, J., Lv, G., Crispe, I. N., & Tu, Z. (2022). Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. Journal of Clinical Investigation, 132(4), e150101. https://doi.org/10.1172/JCI150101

39. Kasirer-Friede, A., Peuhu, E., Ivaska, J., & Shattil, S. J. (2022). Platelet SHARPIN regulates platelet adhesion and inflammatory responses through associations with αIIbβ3 and LUBAC. Blood Advances, bloodadvances.2021005611. https://doi.org/10.1182/bloodadvances.2021005611

40. Paletta, A., Di Diego García, F., Varese, A., Erra Diaz, F., García, J., Cisneros, J. C., Ludueña, G., Mazzitelli, I., Pisarevsky, A., Cabrerizo, G., López Malizia, Á., Rodriguez, A. G., Lista, N., Longueira, Y., Sabatté, J., Geffner, J., Remes Lenicov, F., & Ceballos, A. (2022). Platelets modulate CD4 + T‐cell function in COVID‐19 through a PD‐L1 dependent mechanism. British Journal of Haematology, bjh.18062. https://doi.org/10.1111/bjh.18062

41. Martyanov, A. A., Boldova, A. E., Stepanyan, M. G., An, O. I., Gur’ev, A. S., Kassina, D. V., Volkov, A. Y., Balatskiy, A. V., Butylin, A. A., Karamzin, S. S., Filimonova, E. V., Tsarenko, S. V., Roumiantsev, S. A., Rumyantsev, A. G., Panteleev, M. A., Ataullakhanov, F. I., & Sveshnikova, A. N. (2022). Longitudinal multiparametric characterization of platelet dysfunction in COVID-19: Effects of disease severity, anticoagulation therapy and inflammatory status. Thrombosis Research, 211, 27–37. https://doi.org/10.1016/j.thromres.2022.01.013

42. McMorran, B. J., Wieczorski, L., Drysdale, K. E., Chan, J.-A., Huang, H. M., Smith, C., Mitiku, C., Beeson, J. G., Burgio, G., & Foote, S. J. (2012). Platelet Factor 4 and Duffy Antigen Required for Platelet Killing of Plasmodium falciparum. Science, 338(6112), 1348–1351. https://doi.org/10.1126/science.1228892

43. Chaudhuri, A., Zbrzezna, V., Polyakova, J., Pogo, A. O., Hesselgesser, J., & Horuk, R. (1994). Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor. Journal of Biological Chemistry, 269(11), 7835–7838. https://doi.org/10.1016/S0021-9258(17)37123-5

44. Peyron, F., Polack, B., Lamotte, D., Kolodie, L., & Ambroise-Thomas, P. (1989). Plasmodium falciparum growth inhibition by human platelets in vitro. Parasitology, 99(3), 317–322. https://doi.org/10.1017/S0031182000059011

45. McMorran, B. J., Burgio, G., & Foote, S. J. (2013). New insights into the protective power of platelets in malaria infection. Communicative & Integrative Biology, 6(3), e23653. https://doi.org/10.4161/cib.23653

46. del Conde, I., Crúz, M. A., Zhang, H., López, J. A., & Afshar-Kharghan, V. (2005). Platelet activation leads to activation and propagation of the complement system. Journal of Experimental Medicine, 201(6), 871–879. https://doi.org/10.1084/jem.20041497

47. Hamad, O. A., Ekdahl, K. N., Nilsson, P. H., Andersson, J., Magotti, P., Lambris, J. D., & Nilsson, B. (2008). Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. Journal of Thrombosis and Haemostasis, 6(8), 1413–1421. https://doi.org/10.1111/j.1538-7836.2008.03034.x

48. Yin, W., Ghebrehiwet, B., & Peerschke, E. I. B. (2008). Expression of complement components and inhibitors on platelet microparticles. Platelets, 19(3), 225–233. https://doi.org/10.1080/09537100701777311

49. Palacios-Acedo, A.-L., Langiu, M., Crescence, L., Mège, D., Dubois, C., & Panicot-Dubois, L. (2022). Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk in Different Cancer Types. Cancers, 14(3), 730. https://doi.org/10.3390/cancers14030730

50. Martins Castanheira, N., Spanhofer, A. K., Wiener, S., Bobe, S., & Schillers, H. (2022). Uptake of platelets by cancer cells and recycling of the platelet protein CD42a. Journal of Thrombosis and Haemostasis, 20(1), 170–181. https://doi.org/10.1111/jth.15543

51. Sasano, T., Gonzalez-Delgado, R., Muñoz, N. M., Carlos-Alcade, W., Cho, M. S., Sheth, R. A., Sood, A. K., & Afshar-Kharghan, V. (2022). Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. Journal of Thrombosis and Haemostasis, 20(1), 104–114. https://doi.org/10.1111/jth.15544

52. Liu, X., Chen, X., Xu, C., Lou, J., Weng, Y., & Tang, L. (2022). Platelet protects angiotensin II-driven abdominal aortic aneurysm formation through inhibition of inflammation. Experimental Gerontology, 159, 111703. https://doi.org/10.1016/j.exger.2022.111703

53. Hamad, D. A., Aly, M. M., Abdelhameid, M. A., Ahmed, S. A., Shaltout, A. S., Abdel-Moniem, A. E., Ragheb, A. M. R., Attia, M. N., & Meshref, T. S. (2022). Combined Blood Indexes of Systemic Inflammation as a Mirror to Admission to Intensive Care Unit in COVID-19 Patients: A Multicentric Study. Journal of Epidemiology and Global Health, 12(1), 64–73. https://doi.org/10.1007/s44197-021-00021-5

54. Absinta, M., Ha, S.-K., Nair, G., Sati, P., Luciano, N. J., Palisoc, M., Louveau, A., Zaghloul, K. A., Pittaluga, S., Kipnis, J., & Reich, D. S. (2017). Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. ELife, 6, e29738. https://doi.org/10.7554/eLife.29738

55. Lasek-Bal, A., Jedrzejowska-Szypulka, H., Student, S., Wianecka, A., Zareba, K., Puz, P., Bal, W., Pawletko, K., & Lewin-Kowalik, J. (2019). The importance of selected markers of inflammation and blood-brain barrier damage for short-term ischemic stroke prognosis. Journal of Physiology and Pharmacology : An Of icial Journal of the Polish Physiological Society, 70. https://doi.org/10.26402/jpp.2019.2.04

56. Lasek-Bal, A., Jedrzejowska-Szypulka, H., Student, S., Wianecka, A., Zareba, K., Puz, P., Bal, W., Pawletko, K., & Lewin-Kowalik, J. (2019). The importance of selected markers of inflammation and blood-brain barrier damage for short-term ischemic stroke prognosis. Journal of Physiology and Pharmacology : An Of icial Journal of the Polish Physiological Society, 70. https://doi.org/10.26402/jpp.2019.2.04

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2nd International Conference on Biological Engineering and Medical Science (ICBioMed 2022), Part I
ISBN (Print)
978-1-915371-25-6
ISBN (Online)
978-1-915371-26-3
Published Date
28 April 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/3/20220186
Copyright
28 April 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated