Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 11, 17 November 2023


Open Access | Article

Solution and numerical analysis of two-dimensional time-independent Schrödinger equation based on finite difference method

Yuqi Peng * 1
1 University of Colorado Denver

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 11, 112-120
Published 17 November 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Yuqi Peng. Solution and numerical analysis of two-dimensional time-independent Schrödinger equation based on finite difference method. TNS (2023) Vol. 11: 112-120. DOI: 10.54254/2753-8818/11/20230388.

Abstract

With the continuous development and widespread use of quantum mechanics, solving the Schrödinger equation has become a hot research topic. The finite difference method has the advantages of simple calculation and high accuracy, which means that it has high potential in solving the numerical solutions of the Schrödinger equation. In this paper, we deeply explore the problem of using the finite difference method to solve the numerical solution of the time-independent Schrödinger equation, propose a solution method based on the finite difference method, and evaluate its performance under different conditions. Firstly, by analyzing the principles and characteristics of the finite difference method, we construct a difference format for the time-independent Schrödinger equation. Then, by converting the difference format of the numerical solutions of the equation into a matrix, the numerical calculation problem is transformed into a matrix eigenvalue and eigenvector problem. Finally, for different physical scenarios, the established model is numerically solved and its performance is analyzed. This study found that the constructed numerical solution method exhibits high accuracy and stability in solving the numerical solutions of the time-independent Schrödinger equation. In different physical scenarios, this method can provide satisfactory results, thus verifying the feasibility of applying the finite difference method to this problem.

Keywords

finite difference method, Schrödinger equation, numerical solution, eigenvalue.

References

1. Hazewinkel, M. (1994). Encyclopaedia of Mathematics (1st ed.). Springer Dordrecht.

2. Morton, K. W., & Mayers, D. F. (2005). Numerical Solution of Partial Differential Equations, An Introduction. Cambridge University Press.

3. Fan G., & Liu W. (2023). Analysis of thermal insulation of double-layer glass windows based on differential implicit method. Journal of Ludong University: Natural Science Edition, 39(1), 56-62.

4. Ge M., & Xu D. (2011). Numerical solution of the inverse time fractional diffusion problems. Journal of Zhejiang Normal University: Natural Science Edition, 34(1), 5.

5. Zhang J., Luan S., Han H., & Liang B. (2022). Finite difference method for the heat conduction equation with nonlinear convection term. Journal of Dalian Jiaotong University, 43(5), 115-117.

6. Romao E. C., & Assis L. (2018). Numerical simulation of 1d unsteady heat conduction-convection in spherical and cylindrical coordinates by fourth-order fdm. Engineering, Technology and Applied Science Research, 8(1), 2389-2392.

7. Si X., & Chen D. (2022). Computational simulation of one-dimensional wave equation. Journal of Huaibei Normal University: Natural Science Edition, 043.

8. Zhang Q. (2022). Calculation of wave equation solution based on five-point central difference algorithm. Journal of Chengdu Technological University, 025.

9. Sun S., & Wang B. (2017). Numerical solution of a nonlinear parabolic equation in MEMS. Journal of Henan University: Natural Science Edition, 47(6), 6.

10. Qiao P., Fang J. & Niu Z. (2019). Finite difference method for solving Schrodinger equation. Journal of Guizhou Normal College, 35(12), 5.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
ISBN (Print)
978-1-83558-133-9
ISBN (Online)
978-1-83558-134-6
Published Date
17 November 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/11/20230388
Copyright
17 November 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated