Theoretical and Natural Science

- The Open Access Proceedings Series for Conferences


Theoretical and Natural Science

Vol. 13, 30 November 2023


Open Access | Article

Brief discussion on quantum anomaly Hall effect: From theory to application

Shuming Liang * 1
1 University of Science and Technology of China

* Author to whom correspondence should be addressed.

Theoretical and Natural Science, Vol. 13, 71-82
Published 30 November 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Shuming Liang. Brief discussion on quantum anomaly Hall effect: From theory to application. TNS (2023) Vol. 13: 71-82. DOI: 10.54254/2753-8818/13/20240797.

Abstract

The investigation of topological insulator materials plays a crucial role in the exploration of the quantum anomalous Hall effect. A topological insulator is a distinct type of insulator characterized by its band structure with non-trivial topological features. Topological insulators are characterized by the occurrence of topological phase transitions in the electron energy bands at the Fermi level, which can be attributed to the combined effects of spin-orbit coupling and an external magnetic field. These transitions give rise to the emergence of Hall conductive boundary states, facilitating the manifestation of quantum Hall conductance even in the absence of magnetic fields. The quantum anomalous Hall effect exhibits promising prospects for various applications. For instance, it can serve as a viable means of current transmission in low-power electronic devices, or alternatively, as a medium for constructing qubits in topological quantum computing systems. Furthermore, the utilization of the quantum anomalous Hall effect extends to the development of magnetic sensors with superior performance characteristics and the creation of energy-efficient spintronic devices. This work endeavors to conduct a comprehensive examination and evaluation of the theory and practical implementation of the quantum Anomaly Hall effect by the analysis and review of relevant literature. In addition, it intends to provide potential avenues for future applications in this field.

Keywords

Quantum Hall Effects, Quantum Anomalous Hall Effects, Topological Insulators, Magnetic Semiconductors

References

1. Oh, S. (2013). The complete quantum Hall trio. Science, 340(6129), 153-154.

2. Kachniarz, M., Petruk, O., Maciej, O., Ciuk, T., Strupiński, W., Salach, J., ... & Winiarski, W. (2015). Functional properties of miniature graphene hall-effect sensor. Journal of Electrical Engineering-Elektrotechnicky Casopis, 66(7), 149-152.

3. von Klitzing, K. (2017). Quantum Hall effect: Discovery and application. Annual Review of Condensed Matter Physics, 8, 13-30.

4. Kellendonk, J., Richter, T., & Schulz-Baldes, H. (2002). Edge current channels and Chern numbers in the integer quantum Hall effect. Reviews in Mathematical Physics, 14(01), 87-119.

5. Perov, A. A., & Solnyshkova, L. V. (2008). Magnetic bloch states and carrier transport in two-dimensional semiconductor lattice structures with spin-orbit interaction. JETP letters, 88, 625-630.

6. Zhang, H. (2014). Electronic and Spin Correlations in Asymmetric Quantum Point Contacts (Doctoral dissertation, Duke University).

7. Stormer, H. L., Tsui, D. C., & Gossard, A. C. (1999). The fractional quantum Hall effect. Reviews of Modern Physics, 71(2), S298.

8. Sheng, D. N., Gu, Z. C., Sun, K., & Sheng, L. (2011). Fractional quantum Hall effect in the absence of Landau levels. Nature communications, 2(1), 389.

9. Kim, P., & Strominger, A. (2015). Physics in Low-Dimensional Materials. Physics Harvard University Department of Physics Newsletter, 9-11.

10. Pan, L., Grutter, A., Zhang, P., Che, X., Nozaki, T., Stern, A., ... & Wang, K. L. (2020). Observation of quantum anomalous Hall effect and exchange interaction in topological insulator/antiferromagnet heterostructure. Advanced Materials, 32(34), 2001460.

11. Halperin, B. I. (1986). The quantized Hall effect. Scientific American, 254(4), 52-61.

12. Yu, F. H., Wu, T., Wang, Z. Y., Lei, B., Zhuo, W. Z., Ying, J. J., & Chen, X. H. (2021). Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Physical Review B, 104(4), L041103.

13. Kroemer, H. (2001). Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks. Reviews of modern physics, 73(3), 783.

14. Guo, G. Y., Yao, Y., & Niu, Q. (2005). Ab initio calculation of the intrinsic spin Hall effect in semiconductors. Physical review letters, 94(22), 226601.

15. Ingram, D. B., & Linic, S. (2011). Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 133(14), 5202-5205.

16. Sessler, G. M. (2005). Physical principles of electrets. Electrets, 13-80.

17. Weng, H., Yu, R., Hu, X., Dai, X., & Fang, Z. (2015). Quantum anomalous Hall effect and related topological electronic states. Advances in Physics, 64(3), 227-282.

18. Cooper, N. R., Halperin, B. I., & Ruzin, I. M. (1997). Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field. Physical Review B, 55(4), 2344.

19. Li, L., Que, P. W., & Chen, L.. (2005). Application of new Hall sensors in current detection. Instrumentation Technology and Sensors, 4, 3-4.

20. Girvin, S. M. (2002). The quantum Hall effect: Novel excitations and broken symmetries. In Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems: Session LXIX. 7–31 July 1998 (pp. 53-175). Berlin, Heidelberg: Springer Berlin Heidelberg.

21. Gusynin, V. P., & Sharapov, S. G. (2005). Unconventional integer quantum Hall effect in graphene. Physical review letters, 95(14), 146801.

22. Bellissard, J. (1995). Noncommutative geometry and quantum Hall effect. In Proceedings of the International Congress of Mathematicians: August 3–11, 1994 Zürich, Switzerland (pp. 1238-1246). Birkhäuser Basel.

23. Kim, Y. B., Nayak, C., Demler, E., Read, N., & Sarma, S. D. (2001). Bilayer paired quantum Hall states and Coulomb drag. Physical Review B, 63(20), 205315.

24. Von Klitzing, K. (1986). The quantized Hall effect. Reviews of Modern Physics, 58(3), 519.

25. He, Ke;Wang, Yayu;Xue, Qi-Kun Annual Review of Condensed Matter Physics, 10 Mar 2018, Vol. 9, Issue 1, pages 329 – 344

26. Y. Zhang, G. Hu, & B. Xiang. (2021). Progress in the study of quantum anomalous Hall effect. Journal of Low Temperature Physics, 2, 69-88.

27. Niu, Q., Thouless, D. J., & Wu, Y. S. (1985). Quantized Hall conductance as a topological invariant. Physical Review B, 31(6), 3372.

28. Avron, J. E., Osadchy, D., & Seiler, R. (2003). A topological look at the quantum Hall effect. Physics today, 56(8), 38-42.

29. Pan, L., Liu, X., He, Q. L., Stern, A., Yin, G., Che, X., ... & Wang, K. L. (2020). Probing the low-temperature limit of the quantum anomalous Hall effect. Science advances, 6(25), eaaz3595.

30. He, K., Wang, Y., & Xue, Q. K. (2018). Topological materials: quantum anomalous Hall system. Annual Review of Condensed Matter Physics, 9, 329-344.

31. Weng, H., Yu, R., Hu, X., Dai, X., & Fang, Z. (2015). Quantum anomalous Hall effect and related topological electronic states. Advances in Physics, 64(3), 227-282.

32. Hasan, M. Z., & Kane, C. L. (2010). Colloquium: topological insulators. Reviews of modern physics, 82(4), 3045.

33. Xu, N., Xu, Y., & Zhu, J. (2017). Topological insulators for thermoelectrics. npj Quantum Materials, 2(1), 51.

34. Ghasemi, A. (2017). Atomic structure of thin films and heterostructure of Bi2Te3 and Bi2Se3 topological insulators (Doctoral dissertation, University of York).

35. Goldman, N., Anisimovas, E., Gerbier, F., Öhberg, P., Spielman, I. B., & Juzeliūnas, G. (2013). Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals. New journal of physics, 15(1), 013025.

36. Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., & West, K. W. (1993). N-electron ground state energies of a quantum dot in magnetic field. Physical review letters, 71(4), 613.

37. Cage, M. E., Klitzing, K., Chang, A. M., Duncan, F., Haldane, M., Laughlin, R. B., ... & Thouless, D. J. (2012). The quantum Hall effect. Springer Science & Business Media.

38. Tokura, Y., Kawasaki, M., & Nagaosa, N. (2017). Emergent functions of quantum materials. Nature Physics, 13(11), 1056-1068.

39. Bhattacharyya, S., Akhgar, G., Gebert, M., Karel, J., Edmonds, M. T., & Fuhrer, M. S. (2021). Recent progress in proximity coupling of magnetism to topological insulators. Advanced Materials, 33(33), 2007795.

40. Wang, A. Q., Ye, X. G., Yu, D. P., & Liao, Z. M. (2020). Topological semimetal nanostructures: from properties to topotronics. ACS nano, 14(4), 3755-3778.

41. He, K., Wang, Y., & Xue, Q. (2015). Quantum anomalous Hall effect. Topological

42. Rachel, S. (2018). Interacting topological insulators: a review. Reports on Progress in Physics, 81(11), 116501.

43. Moroz, A. V., & Barnes, C. H. W. (1999). Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Physical Review B, 60(20), 14272.

44. Wald, R. M. (1980). Quantum gravity and time reversibility. Physical Review D, 21(10), 2742.Insulators: Fundamentals and Perspectives, 357-376.

45. Finney, N. R. (2021). Symmetry Engineering via Angular Control of Layered van Der Waals Heterostructures. Columbia University.

46. Philip, T. M., & Gilbert, M. J. (2017). High-performance nanoscale topological energy transduction. Scientific reports, 7(1), 6736.

47. Martin, L. W., & Schlom, D. G. (2012). Advanced synthesis techniques and routes to new single-phase multiferroics.

48. Nagaosa, N. (2006). Anomalous Hall Effect—A New Perspective—. Journal of the Physical Society of Japan, 75(4), 042001-042001.

49. S.C. Wu,G.Shan,B.Yan,Phys.Rev.Lett.,113 (2014),256401.

50. P.Zhao,Y.Ma,H.Wang,B.Huang,Y.Dai,J.Phys. Chem.C,123(2019),14707.

51. G.Xu,B.Lian,S.C.Zhang,Phys.Rev.Lett.,115 (2015),186802.

52. X.L.Sheng,B.K.Nikoli ,Phys.Rev.B,95 (2017), 201402(R).

53. C.Huang,J.Zhou,H.Wu,K.Deng,P.Jena,E.Kan, Phys.Rev.B,95(2017),045113.

54. J.Y.You,Z.Zhang,B.Gu,G.Su,Phys.Rev.Appl., 12(2019),024063.

55. H.P.Wang,W.Luo,H.J.Xiang,Phys.Rev.B,95 (2017),125430.

56. H.Zhang,W.Yang,P.Cui,X.Xu,Z.Zhang,Phys. Rev.B,102(2020),11543.

57. G.Hu,Y.Zhu,J.Xiang,T.Yang,M.Huang,Z.Wang, Z.wang,P.Liu,Y.Zhang,C.Feng,D.Hou,W.Zhu, M.Gu,C.Hsu,F.Chuang,Y.Lu,B.Xiang,Y.Chueh, ACSNano,14(2020),12037.

58. F.Luo,X.Hao,Y.Jia,J.Yao,Q.Meng,S.Zhai,J.Wu,W.Dou,M.Zhou,Nanoscale,13(2021),2527.

59. Liu, C. X., Zhang, S. C., & Qi, X. L. (2016). The quantum anomalous Hall effect: theory and experiment. Annual Review of Condensed Matter Physics, 7, 301-321.

60. Zhang, L., Zhang, C. W., Zhang, S. F., Ji, W. X., Li, P., & Wang, P. J. (2019). Two-dimensional honeycomb-kagome Ta 2 S 3: a promising single-spin Dirac fermion and quantum anomalous hall insulator with half-metallic edge states. Nanoscale, 11(12), 5666-5673.

61. Mahoney, A. C., Colless, J. I., Peeters, L., Pauka, S. J., Fox, E. J., Kou, X., ... & Reilly, D. J. (2017). Zero-field edge plasmons in a magnetic topological insulator. Nature communications, 8(1), 1836.

62. Kumar, N., Guin, S. N., Manna, K., Shekhar, C., & Felser, C. (2020). Topological quantum materials from the viewpoint of chemistry. Chemical Reviews, 121(5), 2780-2815.

63. Zhang, H., Lazo, C., Blügel, S., Heinze, S., & Mokrousov, Y. (2012). Electrically tunable quantum anomalous Hall effect in graphene decorated by 5 d transition-metal adatoms. Physical review letters, 108(5), 056802.

64. Lin, Y. C., Torsi, R., Younas, R., Hinkle, C. L., Rigosi, A. F., Hill, H. M., ... & Robinson, J. A. (2023). Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS nano.

65. Laucht, A., Hohls, F., Ubbelohde, N., Gonzalez-Zalba, M. F., Reilly, D. J., Stobbe, S., ... & Baugh, J. (2021). Roadmap on quantum nanotechnologies. Nanotechnology, 32(16), 162003.

66. Narang, P., Garcia, C. A., & Felser, C. (2021). The topology of electronic band structures. Nature Materials, 20(3), 293-300.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this series agree to the following terms:

1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
ISBN (Print)
978-1-83558-189-6
ISBN (Online)
978-1-83558-190-2
Published Date
30 November 2023
Series
Theoretical and Natural Science
ISSN (Print)
2753-8818
ISSN (Online)
2753-8826
DOI
10.54254/2753-8818/13/20240797
Copyright
30 November 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated